Publications


Energy absorption in the laser-QED regime

Scientific Reports Springer Nature 9 (2019) 8956

A Savin, A Ross, R Aboushelbaya, M Mayr, B Spiers, R Wang, P Norreys

A theoretical and numerical investigation of non-ponderomotive absorption at laser intensities relevant to quantum electrodynamics is presented. It is predicted that there is a regime change in the dependence of fast electron energy on incident laser energy that coincides with the onset of pair production via the Breit-Wheeler process. This prediction is numerically verified via an extensive campaign of QED-inclusive particle-in-cell simulations. The dramatic nature of the power law shift leads to the conclusion that this process is a candidate for an unambiguous signature that future experiments on multi-petawatt laser facilities have truly entered the QED regime.


Supersonic plasma turbulence in the laboratory

Nature Communications Nature Research 10 (2019) 1758

TG White, MT Oliver, P Mabey, AFA Bott, AA Schekochihin, G Gregori


Laboratory study of stationary accretion shock relevant to astrophysical systems

Scientific Reports Springer Nature 9 (2019) 8157

P Mabey, B Albertazzi, E Falize, T Michel, G Rigon, L Van Box Som, A Pelka, F-E Brack, F Kroll, E Filippov, G Gregori, Y Kuramitsu, DQ Lamb, C Li, N Ozaki, S Pikuz, Y Sakawa, P Tzeferacos, M Koenig

Accretion processes play a crucial role in a wide variety of astrophysical systems. Of particular interest are magnetic cataclysmic variables, where, plasma flow is directed along the star's magnetic field lines onto its poles. A stationary shock is formed, several hundred kilometres above the stellar surface; a distance far too small to be resolved with today's telescopes. Here, we report the results of an analogous laboratory experiment which recreates this astrophysical system. The dynamics of the laboratory system are strongly influenced by the interplay of material, thermal, magnetic and radiative effects, allowing a steady shock to form at a constant distance from a stationary obstacle. Our results demonstrate that a significant amount of plasma is ejected in the lateral direction; a phenomenon that is under-estimated in typical magnetohydrodynamic simulations and often neglected in astrophysical models. This changes the properties of the post-shock region considerably and has important implications for many astrophysical studies.


Radiation transfer in cylindrical, toroidal and hemi-ellipsoidal plasmas

Journal of Quantitative Spectroscopy and Radiative Transfer Elsevier BV (2019)

G Pérez-Callejo, JS Wark, SJ Rose


A proposal to measure iron opacity at conditions close to the solar convective zone-radiative zone boundary

High Energy Density Physics Elsevier BV (2019)

DJ Hoarty, J Morton, M Jeffery, LK Pattison, A Wardlow, SPD Mangles, SJ Rose, C Iglesias, K Opachich, RF Heeter, TS Perry


Thomson scattering cross section in a magnetized, high-density plasma

Physical Review E American Physical Society 99 (2019) 063204

AFA Bott, G Gregori

We calculate the Thomson scattering cross section in a nonrelativistic, magnetized, high-density plasma—in a regime where collective excitations can be described by magnetohydrodynamics. We show that, in addition to cyclotron resonances and an elastic peak, the cross section exhibits two pairs of peaks associated with slow and fast magnetosonic waves; by contrast, the cross section arising in pure hydrodynamics possesses just a single pair of Brillouin peaks. Both the position and the width of these magnetosonic-wave peaks depend on the ambient magnetic field and temperature, as well as transport and thermodynamic coefficients, and so can therefore serve as a diagnostic tool for plasma properties that are otherwise challenging to measure.


Laboratory measurements of geometrical effects in the x-ray emission of optically thick lines for ICF diagnostics

Physics of Plasmas AIP Publishing 26 (2019) 063302

G Perez-Callejo, LC Jarrott, DA Liedahl, EV Marley, GE Kemp, RF Heeter, JA Emig, ME Foord, K Widmann, J Jaquez, H Huang, SJ Rose, J Wark, MB Schneider

Understanding the effects of radiative transfer in High Energy Density Physics experiments is critical for the characterization of the thermodynamic properties of highly ionized matter, in particular in Inertial Confinement Fusion (ICF). We report on non-Local Thermodynamic Equilibrium experiments on cylindrical targets carried out at the Omega Laser Facility at the Laboratory for Laser Energetics, Rochester NY, which aim to characterize these effects. In these experiments, a 50/50 mixture of iron and vanadium, with a thickness of 2000 Å and a diameter of 250 μm, is contained within a beryllium tamper, with a thickness of 10 μm and a diameter of 1000 μm. Each side of the beryllium tamper is then irradiated using 18 of the 60 Omega beams with an intensity of roughly 3 × 1014 W cm−2 per side, over a duration of 3 ns. Spectroscopic measurements show that a plasma temperature on the order of 2 keV was produced. Imaging data show that the plasma remains cylindrical, with geometrical aspect ratios (quotient between the height and the radius of the cylinder) from 0.4 to 2.0. The temperatures in this experiment were kept sufficiently low (∼1–2 keV) so that the optically thin Li-like satellite emission could be used for temperature diagnosis. This allowed for the characterization of optical-depth-dependent geometric effects in the vanadium line emission. Simulations present good agreement with the data, which allows this study to benchmark these effects in order to take them into account to deduce temperature and density in future ICF experiments, such as those performed at the National Ignition Facility.


The blind implosion-maker: Automated inertial confinement fusion experiment design

Physics of Plasmas AIP Publishing 26 (2019) 062706

PW Hatfield, S Rose, R Scott

The design of inertial confinement fusion (ICF) experiments, alongside improving the development of energy density physics theory and experimental methods, is one of the key challenges in the quest for nuclear fusion as a viable energy source [O. A. Hurricane, J. Phys.: Conf. Ser. 717, 012005 (2016)]. Recent challenges in achieving a high-yield implosion at the National Ignition Facility (NIF) have led to new interest in considering a much wider design parameter space than normally studied [J. L. Peterson et al., Phys. Plasmas 24, 032702 (2017)]. Here, we report an algorithmic approach that can produce reasonable ICF designs with minimal assumptions. In particular, we use the genetic algorithm metaheuristic, in which “populations” of implosions are simulated, the design of the capsule is described by a “genome,” natural selection removes poor designs, high quality designs are “mated” with each other based on their yield, and designs undergo “mutations” to introduce new ideas. We show that it takes ∼5 × 104 simulations for the algorithm to find an original NIF design. We also link this method to other parts of the design process and look toward a completely automated ICF experiment design process—changing ICF from an experiment design problem to an algorithm design problem.


Observing thermal Schwinger pair production

Physical Review A American Physical Society (APS) 99 (2019) 052120

O Gould, S Mangles, A Rajantie, S Rose, C Xie


First demonstration of ARC-accelerated proton beams at the National Ignition Facility

Physics of Plasmas 26 (2019)

D Mariscal, T Ma, SC Wilks, AJ Kemp, GJ Williams, P Michel, H Chen, PK Patel, BA Remington, M Bowers, L Pelz, MR Hermann, W Hsing, D Martinez, R Sigurdsson, M Prantil, A Conder, J Lawson, M Hamamoto, P Di Nicola, C Widmayer, D Homoelle, R Lowe-Webb, S Herriot, W Williams, D Alessi, D Kalantar, R Zacharias, C Haefner, N Thompson, T Zobrist, D Lord, N Hash, A Pak, N Lemos, M Tabak, C McGuffey, J Kim, FN Beg, MS Wei, P Norreys, A Morace, N Iwata, Y Sentoku, D Neely, GG Scott, K Flippo

© 2019 Author(s). New short-pulse kilojoule, Petawatt-class lasers, which have recently come online and are coupled to large-scale, many-beam long-pulse facilities, undoubtedly serve as very exciting tools to capture transformational science opportunities in high energy density physics. These short-pulse lasers also happen to reside in a unique laser regime: very high-energy (kilojoule), relatively long (multi-picosecond) pulse-lengths, and large (10s of micron) focal spots, where their use in driving energetic particle beams is largely unexplored. Proton acceleration via Target Normal Sheath Acceleration (TNSA) using the Advanced Radiographic Capability (ARC) short-pulse laser at the National Ignition Facility in the Lawrence Livermore National Laboratory is demonstrated for the first time, and protons of up to 18 MeV are measured using laser irradiation of >1 ps pulse-lengths and quasi-relativistic (∼10 18 W/cm 2 ) intensities. This is indicative of a super-ponderomotive electron acceleration mechanism that sustains acceleration over long (multi-picosecond) time-scales and allows for proton energies to be achieved far beyond what the well-established scalings of proton acceleration via TNSA would predict at these modest intensities. Furthermore, the characteristics of the ARC laser (large ∼100 μm diameter focal spot, flat spatial profile, multi-picosecond, relatively low prepulse) provide acceleration conditions that allow for the investigation of 1D-like particle acceleration. A high flux ∼ 50 J of laser-accelerated protons is experimentally demonstrated. A new capability in multi-picosecond particle-in-cell simulation is applied to model the data, corroborating the high proton energies and elucidating the physics of multi-picosecond particle acceleration.


Recovery of metastable dense Bi synthesized by shock compression

Applied Physics Letters AIP Publishing 114 (2019) 120601

Gorman, D McGonegle, J Wark

X-ray free electron laser (XFEL) sources have revolutionized our capability to study ultrafast material behavior. Using an XFEL, we revisit the structural dynamics of shock compressed bismuth, resolving the transition sequence on shock release in unprecedented details. Unlike previous studies that found the phase-transition sequence on shock release to largely adhere to the equilibrium phase diagram (i.e., Bi-V → Bi-III → Bi-II → Bi-I), our results clearly reveal previously unseen, non-equilibrium behavior at these conditions. On pressure release from the Bi-V phase at 5 GPa, the Bi-III phase is not formed but rather a new metastable form of Bi. This new phase transforms into the Bi-II phase which in turn transforms into a phase of Bi which is not observed on compression. We determine this phase to be isostructural with β-Sn and recover it to ambient pressure where it exists for 20 ns before transforming back to the Bi-I phase. The structural relationship between the tetragonal β-Sn phase and the Bi-II phase (from which it forms) is discussed. Our results show the effect that rapid compression rates can have on the phase selection in a transforming material and show great promise for recovering high-pressure polymorphs with novel material properties in the future.


Maser radiation from collisionless shocks: application to astrophysical jets

High Power Laser Science and Engineering Cambridge University Press 7 (2019) e17

DC Speirs, K Ronald, ADR Phelps, A Rigby, JE Cross, PM Kozlowski, F Miniati, M Oliver, S Sarkar, P Tzeferacos, G Gregori, E al.

This paper describes a model of electron energization and cyclotron-maser emission applicable to astrophysical magnetized collisionless shocks. It is motivated by the work of Begelman, Ergun and Rees [Astrophys. J. 625, 51 (2005)] who argued that the cyclotron-maser instability occurs in localized magnetized collisionless shocks such as those expected in blazar jets. We report on recent research carried out to investigate electron acceleration at collisionless shocks and maser radiation associated with the accelerated electrons. We describe how electrons accelerated by lower-hybrid waves at collisionless shocks generate cyclotron-maser radiation when the accelerated electrons move into regions of stronger magnetic fields. The electrons are accelerated along the magnetic field and magnetically compressed leading to the formation of an electron velocity distribution having a horseshoe shape due to conservation of the electron magnetic moment. Under certain conditions the horseshoe electron velocity distribution function is unstable to the cyclotron-maser instability [Bingham and Cairns, Phys. Plasmas 7, 3089 (2000); Melrose, Rev. Mod. Plasma Phys. 1, 5 (2017)].


The use of geometric effects in diagnosing ion density in ICF-related dot spectroscopy experiments

High Energy Density Physics Elsevier 30 (2019) 45-51

J Wark, G Perez-Callejo, S Rose, M Schneider, D Liedahl

We describe a method to calculate the ion density of High Energy Density (HED) cylindrical plasmas used in Dot Spectroscopy experiments. This method requires only spectroscopic measurements of the Heα region obtained from two views (Face-on and Side-on). We make use of the fact that the geometry of the plasma affects the observed flux of optically thick lines. The ion density can be derived from the aspect ratio (height-to-radius) of the cylinder and the optical depth of the Heα-y line (1s2p 3P1 → 1s 2 1S0). The aspect ratio and the optical depth of the y line are obtained from the spectra using ratios measured from the two directions of emission of the optically thick Heα-w line (1s2p 1P1 → 1s 2 1S0) and the ratio of the optically thick to thin lines. The method can be applied to mid-Z elements at ion densities of 1019 − 1020 cm−3 and temperatures of a the order of keV, which is a relevant regime for Inertial Confinement Fusion (ICF) experiments.


Phase transition lowering in dynamically compressed silicon

Nature Physics Springer Nature 15 (2018) 89-94

EE McBride, A Krygier, A Ehnes, E Galtier, M Harmand, Z Konôpková, HJ Lee, HP Liermann, B Nagler, A Pelka, M Rödel, A Schropp, RF Smith, C Spindloe, D Swift, F Tavella, S Toleikis, T Tschentscher, J Wark, A Higginbotham

Silicon, being one of the most abundant elements in nature, attracts wide-ranging scientific and technological interest. Specifically, in its elemental form, crystals of remarkable purity can be produced. One may assume that this would lead to silicon being well understood, and indeed, this is the case for many ambient properties, as well as for higher-pressure behaviour under quasi-static loading. However, despite many decades of study, a detailed understanding of the response of silicon to rapid compression—such as that experienced under shock impact—remains elusive. Here, we combine a novel free-electron laser-based X-ray diffraction geometry with laser-driven compression to elucidate the importance of shear generated during shock compression on the occurrence of phase transitions. We observe lowering of the hydrostatic phase boundary in elemental silicon, an ideal model system for investigating high-strength materials, analogous to planetary constituents. Moreover, we unambiguously determine the onset of melting above 14 GPa, previously ascribed to a solid–solid phase transition, undetectable in the now conventional shocked diffraction geometry; transitions to the liquid state are expected to be ubiquitous in all systems at sufficiently high pressures and temperatures.


Erratum: "Setup for meV-resolution inelastic X-ray scattering measurements and X-ray diffraction at the Matter in Extreme Conditions endstation at the Linac Coherent Light Source" [Rev. Sci. Instrum. 89, 10F104 (2018)].

The Review of scientific instruments 89 (2018) 129901-129901

EE McBride, TG White, A Descamps, LB Fletcher, K Appel, F Condamine, CB Curry, F Dallari, S Funk, E Galtier, EJ Gamboa, M Gauthier, S Goede, JB Kim, HJ Lee, BK Ofori-Okai, M Oliver, A Rigby, C Schoenwaelder, P Sun, T Tschentscher, BBL Witte, U Zastrau, G Gregori, B Nagler, J Hastings, SH Glenzer, G Monaco


Analytical estimates of proton acceleration in laser-produced turbulent plasmas

Journal of Plasma Physics Cambridge University Press 84 (2018) 905840608

K Beyer, B Reville, A Bott, H-S Park, S Sarkar, G Gregori

With the advent of high power lasers, new opportunities have opened up for simulating astrophysical processes in the laboratory. We show that second-order Fermi acceleration can be directly investigated at the National Ignition Facility, Livermore. This requires measuring the momentum-space diffusion of 3 MeV protons produced within a turbulent plasma generated by a laser. Treating Fermi acceleration as a biased diffusion process, we show analytically that a measurable broadening of the initial proton distribution is then expected for particles exiting the plasma.


Femtosecond diffraction studies of solid and liquid phase changes in shock-compressed bismuth

Scientific Reports Springer Nature Publishing Group 8 (2018) 16927-

Gorman, AL Coleman, R Briggs, RS McWilliams, D McGonegle, CA Bolme, AE Gleason, E Galtier, HJ Lee, E Granados, M Śliwa, C Sanloup, S Rothman, DE Fratanduono, RF Smith, GW Collins, JH Eggert, J Wark, MI McMahon

Bismuth has long been a prototypical system for investigating phase transformations and melting at high pressure. Despite decades of experimental study, however, the lattice-level response of Bi to rapid (shock) compression and the relationship between structures occurring dynamically and those observed during slow (static) compression, are still not clearly understood. We have determined the structural response of shock-compressed Bi to 68 GPa using femtosecond X-ray diffraction, thereby revealing the phase transition sequence and equation-of-state in unprecedented detail for the first time. We show that shocked-Bi exhibits a marked departure from equilibrium behavior - the incommensurate Bi-III phase is not observed, but rather a new metastable phase, and the Bi-V phase is formed at significantly lower pressures compared to static compression studies. We also directly measure structural changes in a shocked liquid for the first time. These observations reveal new behaviour in the solid and liquid phases of a shocked material and give important insights into the validity of comparing static and dynamic datasets.


Single-shot frequency-resolved optical gating for retrieving the pulse shape of high energy picosecond pulses

Review of Scientific Instruments AIP Publishing 89 (2018) 103509

R Aboushelbaya, A Savin, L Ceurvorst, J Sadler, PA Norreys, AS Davies, DH Froula, A Boyle, M Galimberti, P Oliveira, B Parry, Y Katzir, K Glize

Accurate characterization of laser pulses used in experiments is a crucial step to the analysis of their results. In this paper, a novel single-shot frequency-resolved optical gating (FROG) device is described, one that incorporates a dispersive element which allows it to fully characterize pulses up to 25 ps in duration with a 65 fs per pixel temporal resolution. A newly developed phase retrieval routine based on memetic algorithms is implemented and shown to circumvent the stagnation problem that often occurs with traditional FROG analysis programs when they encounter a local minimum.


Setup for meV-resolution inelastic X-ray scattering measurements and X-ray diffraction at the Matter in Extreme Conditions endstation at the Linac Coherent Light Source

Review of Scientific Instruments AIP Publishing 89 (2018) 10F104

EE McBride, TG White, A Descamps, LB Fletcher, K Appel, F Condamine, CB Curry, S Funk, E Galtier, M Gauthier, S Goede, JB Kim, HJ Lee, BK Ofori-Okai, M Oliver, A Rigby, C Schoenwaelder, P Sun, T Tschentscher, B Witte, U Zastrau, G Gregori, B Nagler, J Hastings, G Monaco

We describe a setup for performing inelastic X-ray scattering and X-ray diffraction measurements at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source. This technique is capable of performing high-, meV-resolution measurements of dynamic ion features in both crystalline and non-crystalline materials. A four-bounce silicon (533) monochromator was used in conjunction with three silicon (533) diced crystal analyzers to provide an energy resolution of ∼50 meV over a range of ∼500 meV in single shot measurements. In addition to the instrument resolution function, we demonstrate the measurement of longitudinal acoustic phonon modes in polycrystalline diamond. Furthermore, this setup may be combined with the high intensity laser drivers available at MEC to create warm dense matter and subsequently measure ion acoustic modes.


Implementation of a Faraday rotation diagnostic at the OMEGA laser facility

High Power Laser Science and Engineering Cambridge University Press 6 (2018) e49-

A Rigby, A Bott, T White, P Tzeferacos, DQ Lamb, DH Froula, G Gregori

Magnetic field measurements in turbulent plasmas are often difficult to perform. Here we show that for ⩾ kG magnetic fields, a time-resolved Faraday rotation measurement can be made at the OMEGA laser facility. This diagnostic has been implemented using the Thomson scattering probe beam and the resultant path-integrated magnetic field has been compared with that of proton radiography. Accurate measurement of magnetic fields is essential for satisfying the scientific goals of many current laser–plasma experiments.

Pages