Publications


Ultrahigh critical current densities, the vortex phase diagram, and the effect of granularity of the stoichiometric high-T-c superconductor CaKFe4As4

PHYSICAL REVIEW MATERIALS 2 (2018) ARTN 074802

SJ Singh, M Bristow, WR Meier, P Taylor, SJ Blundell, PC Canfield, AI Coldea


Hyperfine interaction of individual atoms on a surface.

Science (New York, N.Y.) 362 (2018) 336-339

P Willke, Y Bae, K Yang, JL Lado, A Ferrón, T Choi, A Ardavan, J Fernández-Rossier, AJ Heinrich, CP Lutz

Taking advantage of nuclear spins for electronic structure analysis, magnetic resonance imaging, and quantum devices hinges on knowledge and control of the surrounding atomic-scale environment. We measured and manipulated the hyperfine interaction of individual iron and titanium atoms placed on a magnesium oxide surface by using spin-polarized scanning tunneling microscopy in combination with single-atom electron spin resonance. Using atom manipulation to move single atoms, we found that the hyperfine interaction strongly depended on the binding configuration of the atom. We could extract atom- and position-dependent information about the electronic ground state, the state mixing with neighboring atoms, and properties of the nuclear spin. Thus, the hyperfine spectrum becomes a powerful probe of the chemical environment of individual atoms and nanostructures.


Molecular electronic spin qubits from a spin-frustrated trinuclear copper complex.

Chemical communications (Cambridge, England) 54 (2018) 12934-12937

B Kintzel, M Böhme, J Liu, A Burkhardt, J Mrozek, A Buchholz, A Ardavan, W Plass

The trinuclear copper(ii) complex [Cu3(saltag)(py)6]ClO4 (H5saltag = tris(2-hydroxybenzylidene)triaminoguanidine) was synthesized and characterized by experimental as well as theoretical methods. This complex exhibits a strong antiferromagnetic coupling (J = -298 cm-1) between the copper(ii) ions, mediated by the N-N diazine bridges of the tritopic ligand, leading to a spin-frustrated system. This compound shows a T2 coherence time of 340 ns in frozen pyridine solution, which extends to 591 ns by changing the solvent to pyridine-d5. Hence, the presented compound is a promising candidate as a building block for molecular spintronics.


Static and Fluctuating Magnetic Moments in the Ferroelectric Metal LiOsO3

Proceedings of the 14th International Conference on Muon Spin Rotation, Relaxation and Resonance (μSR2017) Journal of the Physical Society of Japan (2018)

FKK Kirschner, F Lang, FL Pratt, T Lancaster, Y Shi, Y Guo, AT Boothroyd, SJ Blundell


Nodal multigap superconductivity in KCa2Fe4As4F2

Physical Review B 97 (2018) 060509(R)

M Smidman, FKK Kirschner, DT Adroja, AD Hillier, F Lang, Z-C Zhang, G-H Cao, SJ Blundell


Implications of bond disorder in a S=1 kagome lattice.

Scientific reports 8 (2018) 4745-4745

JL Manson, J Brambleby, PA Goddard, PM Spurgeon, JA Villa, J Liu, S Ghannadzadeh, F Foronda, J Singleton, T Lancaster, SJ Clark, IO Thomas, F Xiao, RC Williams, FL Pratt, SJ Blundell, CV Topping, C Baines, C Campana, B Noll

Strong hydrogen bonds such as F···H···F offer new strategies to fabricate molecular architectures exhibiting novel structures and properties. Along these lines and, to potentially realize hydrogen-bond mediated superexchange interactions in a frustrated material, we synthesized [H2F]2[Ni3F6(Fpy)12][SbF6]2 (Fpy = 3-fluoropyridine). It was found that positionally-disordered H2F+ ions link neutral NiF2(Fpy)4 moieties into a kagome lattice with perfect 3-fold rotational symmetry. Detailed magnetic investigations combined with density-functional theory (DFT) revealed weak antiferromagnetic interactions (J ~ 0.4 K) and a large positive-D of 8.3 K with ms = 0 lying below ms = ±1. The observed weak magnetic coupling is attributed to bond-disorder of the H2F+ ions which leads to disrupted Ni-F···H-F-H···F-Ni exchange pathways. Despite this result, we argue that networks such as this may be a way forward in designing tunable materials with varying degrees of frustration.


LaSr3 NiRuO4 H4 : A 4d Transition-Metal Oxide-Hydride Containing Metal Hydride Sheets.

Angewandte Chemie (International ed. in English) (2018)

L Jin, M Lane, D Zeng, FKK Kirschner, F Lang, P Manuel, SJ Blundell, JE McGrady, MA Hayward

The synthesis of the first 4d transition metal oxide-hydride, LaSr3 NiRuO4 H4 , is prepared via topochemical anion exchange. Neutron diffraction data show that the hydride ions occupy the equatorial anion sites in the host lattice and as a result the Ru and Ni cations are located in a plane containing only hydride ligands, a unique structural feature with obvious parallels to the CuO2 sheets present in the superconducting cuprates. DFT calculations confirm the presence of S=1/2  Ni+ and S=0, Ru2+ centers, but neutron diffraction and μSR data show no evidence for long-range magnetic order between the Ni centers down to 1.8 K. The observed weak inter-cation magnetic coupling can be attributed to poor overlap between Ni 3dz2 and H 1s in the super-exchange pathways.


Observation of a crossover from nodal to gapped superconductivity in LuxZr1-xB12

PHYSICAL REVIEW B 98 (2018) ARTN 094505

FKK Kirschner, NE Sluchanko, VB Filipov, FL Pratt, C Baines, NY Shitsevalova, SJ Blundell


Publisher Correction: Magnetic edge states and coherent manipulation of graphene nanoribbons.

Nature 561 (2018) E31-

M Slota, A Keerthi, WK Myers, E Tretyakov, M Baumgarten, A Ardavan, H Sadeghi, CJ Lambert, A Narita, K Müllen, L Bogani

In Fig. 1 of this Letter, there should have been two nitrogen (N) atoms at the 1,3-positions of all the blue chemical structures (next to the oxygen atoms), rather than one at the 2-position. The figure has been corrected online, and the original incorrect figure is shown as Supplementary Information to the accompanying Amendment.


Microscopic effects of Dy doping in the topological insulator Bi2Te3

PHYSICAL REVIEW B 97 (2018) ARTN 174427

LB Duffy, N-J Steinke, JA Krieger, AI Figueroa, K Kummer, T Lancaster, SR Giblin, FL Pratt, SJ Blundell, T Prokscha, A Suter, S Langridge, VN Strocov, Z Salman, G van der Laan, T Hesjedal


Two-gap superconductivity with line nodes in CsCa2Fe4As4F2

PHYSICAL REVIEW B 97 (2018) ARTN 060506

FKK Kirschner, DT Adroja, Z-C Wang, F Lang, M Smidman, PJ Baker, G-H Cao, SJ Blundell


Magnetic edge states and coherent manipulation of graphene nanoribbons.

Nature 557 (2018) 691-695

M Slota, A Keerthi, WK Myers, E Tretyakov, M Baumgarten, A Ardavan, H Sadeghi, CJ Lambert, A Narita, K Müllen, L Bogani

Graphene, a single-layer network of carbon atoms, has outstanding electrical and mechanical properties 1 . Graphene ribbons with nanometre-scale widths2,3 (nanoribbons) should exhibit half-metallicity 4 and quantum confinement. Magnetic edges in graphene nanoribbons5,6 have been studied extensively from a theoretical standpoint because their coherent manipulation would be a milestone for spintronic 7 and quantum computing devices 8 . However, experimental investigations have been hampered because nanoribbon edges cannot be produced with atomic precision and the graphene terminations that have been proposed are chemically unstable 9 . Here we address both of these problems, by using molecular graphene nanoribbons functionalized with stable spin-bearing radical groups. We observe the predicted delocalized magnetic edge states and test theoretical models of the spin dynamics and spin-environment interactions. Comparison with a non-graphitized reference material enables us to clearly identify the characteristic behaviour of the radical-functionalized graphene nanoribbons. We quantify the parameters of spin-orbit coupling, define the interaction patterns and determine the spin decoherence channels. Even without any optimization, the spin coherence time is in the range of microseconds at room temperature, and we perform quantum inversion operations between edge and radical spins. Our approach provides a way of testing the theory of magnetism in graphene nanoribbons experimentally. The coherence times that we observe open up encouraging prospects for the use of magnetic nanoribbons in quantum spintronic devices.


Electrically controlled nuclear polarization of individual atoms.

Nature nanotechnology 13 (2018) 1120-1125

K Yang, P Willke, Y Bae, A Ferrón, JL Lado, A Ardavan, J Fernández-Rossier, AJ Heinrich, CP Lutz

Nuclear spins serve as sensitive probes in chemistry1 and materials science2 and are promising candidates for quantum information processing3-6. NMR, the resonant control of nuclear spins, is a powerful tool for probing local magnetic environments in condensed matter systems, which range from magnetic ordering in high-temperature superconductors7,8 and spin liquids9 to quantum magnetism in nanomagnets10,11. Increasing the sensitivity of NMR to the single-atom scale is challenging as it requires a strong polarization of nuclear spins, well in excess of the low polarizations obtained at thermal equilibrium, as well as driving and detecting them individually4,5,12. Strong nuclear spin polarization, known as hyperpolarization, can be achieved through hyperfine coupling with electron spins2. The fundamental mechanism is the conservation of angular momentum: an electron spin flips and a nuclear spin flops. The nuclear hyperpolarization enables applications such as in vivo magnetic resonance imaging using nanoparticles13, and is harnessed for spin-based quantum information processing in quantum dots14 and doped silicon15-17. Here we polarize the nuclear spins of individual copper atoms on a surface using a spin-polarized current in a scanning tunnelling microscope. By employing the electron-nuclear flip-flop hyperfine interaction, the spin angular momentum is transferred from tunnelling electrons to the nucleus of individual Cu atoms. The direction and magnitude of the nuclear polarization is controlled by the direction and amplitude of the current. The nuclear polarization permits the detection of the NMR of individual Cu atoms, which is used to sense the local magnetic environment of the Cu electron spin.


Doped Sr2FeIrO6-Phase Separation and a Jeff ≠ 0 State for Ir5.

Inorganic chemistry 57 (2018) 10303-10311

JE Page, CV Topping, A Scrimshire, PA Bingham, SJ Blundell, MA Hayward

High-resolution synchrotron X-ray and neutron powder diffraction data demonstrate that, in contrast to recent reports, Sr2FeIrO6 adopts an I1̅ symmetry double perovskite structure with an a-b-c- tilting distortion. This distorted structure does not tolerate cation substitution, with low levels of A-site (Ca, Ba, La) or Fe-site (Ga) substitution leading to separation into two phases: a stoichiometric I1̅ phase and a cation-substituted, P21/ n symmetry, a-a-c+ distorted double perovskite phase. Magnetization, neutron diffraction, and 57Fe Mössbauer data show that, in common with Sr2FeIrO6, the cation substituted Sr2- xA xFe1- yGa yIrO6 phases undergo transitions to type-II antiferromagnetically ordered states at TN ∼ 120 K. However, in contrast to stoichiometric Sr2FeIrO6, cation substituted samples exhibit a further magnetic transition at TA ∼ 220 K, which corresponds to the ordering of Jeff ≠ 0 Ir5+ centers in the cation-substituted, P21/ n symmetry, double perovskite phases.


Common glass-forming spin-liquid state in the pyrochlore magnets Dy2Ti2 O7 and Ho2Ti2 O7

Physical Review B 98 (2018)

AB Eyvazov, R Dusad, TJS Munsie, HA Dabkowska, GM Luke, ER Kassner, JCS Davis, A Eyal

© 2018 American Physical Society. Despite a well-ordered pyrochlore crystal structure and strong magnetic interactions between the Dy3+ or Ho3+ ions, no long-range magnetic order has been detected in the pyrochlore titanates Ho2Ti2O7 and Dy2Ti2O7. To explore the actual magnetic phase formed by cooling these materials, we measure their magnetization dynamics using toroidal, boundary-free magnetization transport techniques. We find that the dynamical magnetic susceptibility of both compounds has the same distinctive phenomenology, which is indistinguishable in form from that of the dielectric permittivity of dipolar glass-forming liquids. Moreover, Ho2Ti2O7 and Dy2Ti2O7 both exhibit microscopic magnetic relaxation times that increase along the super-Arrhenius trajectories analogous to those observed in glass-forming dipolar liquids. Thus, upon cooling below about 2 K, Dy2Ti2O7 and Ho2Ti2O7 both appear to enter the same magnetic state exhibiting the characteristics of a glass-forming spin liquid.


Phase diagram of Bi2Sr2CaCu2O8+δ revisited.

Nature communications 9 (2018) 5210-

IK Drozdov, I Pletikosić, C-K Kim, K Fujita, GD Gu, JCS Davis, PD Johnson, I Božović, T Valla

In cuprate superconductors, the doping of carriers into the parent Mott insulator induces superconductivity and various other phases whose characteristic temperatures are typically plotted versus the doping level p. In most materials, p cannot be determined from the chemical composition, but it is derived from the superconducting transition temperature, Tc, using the assumption that the Tc dependence on doping is universal. Here, we present angle-resolved photoemission studies of Bi2Sr2CaCu2O8+δ, cleaved and annealed in vacuum or in ozone to reduce or increase the doping from the initial value corresponding to Tc = 91 K. We show that p can be determined from the underlying Fermi surfaces and that in-situ annealing allows mapping of a wide doping regime, covering the superconducting dome and the non-superconducting phase on the overdoped side. Our results show a surprisingly smooth dependence of the inferred Fermi surface with doping. In the highly overdoped regime, the superconducting gap approaches the value of 2Δ0 = (4 ± 1)kBTc.


Imaging orbital-selective quasiparticles in the Hund's metal state of FeSe.

Nature materials 17 (2018) 869-874

A Kostin, PO Sprau, A Kreisel, YX Chong, AE Böhmer, PC Canfield, PJ Hirschfeld, BM Andersen, JCS Davis

Strong electronic correlations, emerging from the parent Mott insulator phase, are key to copper-based high-temperature superconductivity. By contrast, the parent phase of an iron-based high-temperature superconductor is never a correlated insulator. However, this distinction may be deceptive because Fe has five actived d orbitals while Cu has only one. In theory, such orbital multiplicity can generate a Hund's metal state, in which alignment of the Fe spins suppresses inter-orbital fluctuations, producing orbitally selective strong correlations. The spectral weights Zm of quasiparticles associated with different Fe orbitals m should then be radically different. Here we use quasiparticle scattering interference resolved by orbital content to explore these predictions in FeSe. Signatures of strong, orbitally selective differences of quasiparticle Zm appear on all detectable bands over a wide energy range. Further, the quasiparticle interference amplitudes reveal that [Formula: see text], consistent with earlier orbital-selective Cooper pairing studies. Thus, orbital-selective strong correlations dominate the parent state of iron-based high-temperature superconductivity in FeSe.


In-situ angle-resolved photoemission spectroscopy of copper-oxide thin films synthesized by molecular beam epitaxy

Journal of Electron Spectroscopy and Related Phenomena (2018)

CK Kim, IK Drozdov, K Fujita, JCS Davis, I Božović, T Valla

© 2018 Elsevier B.V. Angle-resolved photoemission spectroscopy (ARPES) is the key momentum-resolved technique for direct probing of the electronic structure of a material. However, since it is highly surface-sensitive, it has been applied to a relatively small set of complex oxides that can be easily cleaved in ultra-high vacuum. Here we describe a new multi-module system at Brookhaven National Laboratory (BNL) in which an oxide molecular beam epitaxy (OMBE) is interconnected with an ARPES and a spectroscopic-imaging scanning tunneling microscopy (SI-STM) module. This new capability largely expands the range of complex-oxide materials and artificial heterostructures accessible to these two most powerful and complementary techniques for studies of electronic structure of materials. We also present the first experimental results obtained using this system — the ARPES studies of electronic band structure of a La2-xSrxCuO4 (LSCO) thin film grown by OMBE.


Proposal for the detection of magnetic monopoles in spin ice via nanoscale magnetometry

PHYSICAL REVIEW B 97 (2018) ARTN 140402

FKK Kirschner, F Flicker, A Yacoby, NY Yao, SJ Blundell


Multigap Superconductivity in RbCa2Fe4As4F2 Investigated Using mu SR Measurements

JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN 87 (2018) ARTN 124705

DT Adroja, FKK Kirschner, F Lang, M Smidman, AD Hillier, Z-C Wang, G-H Cao, GBG Stenning, SJ Blundell

Pages