Evidence for a J(eff)=0 ground state and defect-induced spin glass behavior in the pyrochlore osmate Y2Os2O7

PHYSICAL REVIEW B 99 (2019) ARTN 174442

NR Davies, CV Topping, H Jacobsen, AJ Princep, FKK Kirschner, MC Rahn, M Bristow, JG Vale, I da Silva, PJ Baker, CJ Sahle, Y-F Guo, D-Y Yan, Y-G Shi, SJ Blundell, DF McMorrow, AT Boothroyd

Magnetic field-induced pair density wave state in the cuprate vortex halo.

Science (New York, N.Y.) 364 (2019) 976-980

SD Edkins, A Kostin, K Fujita, AP Mackenzie, H Eisaki, S Uchida, S Sachdev, MJ Lawler, E-A Kim, JC Séamus Davis, MH Hamidian

High magnetic fields suppress cuprate superconductivity to reveal an unusual density wave (DW) state coexisting with unexplained quantum oscillations. Although routinely labeled a charge density wave (CDW), this DW state could actually be an electron-pair density wave (PDW). To search for evidence of a field-induced PDW, we visualized modulations in the density of electronic states N(r) within the halo surrounding Bi2Sr2CaCu2O8 vortex cores. We detected numerous phenomena predicted for a field-induced PDW, including two sets of particle-hole symmetric N(r) modulations with wave vectors QP and 2Q P , with the latter decaying twice as rapidly from the core as the former. These data imply that the primary field-induced state in underdoped superconducting cuprates is a PDW, with approximately eight CuO2 unit-cell periodicity and coexisting with its secondary CDWs.

Magnetic order and enhanced exchange in the quasi-one-dimensional molecule-based antiferromagnet Cu(NO3)2(pyz)3.

Physical chemistry chemical physics : PCCP 21 (2019) 1014-1018

BM Huddart, J Brambleby, T Lancaster, PA Goddard, F Xiao, SJ Blundell, FL Pratt, J Singleton, P Macchi, R Scatena, AM Barton, JL Manson

The quasi-one-dimensional molecule-based Heisenberg antiferromagnet Cu(NO3)2(pyz)3 has an intrachain coupling J = 13.7(1) K () and exhibits a state of long-range magnetic order below TN = 0.105(1) K. The ratio of interchain to intrachain coupling is estimated to be |J'/J| = 3.3 × 10-3, demonstrating a high degree of isolation for the Cu chains.

Visualizing electronic quantum matter

in Springer Handbooks, (2019) 1369-1390

K Fujita, MH Hamidian, PO Sprau, SD Edkins, JCS Davis

© Springer Nature Switzerland AG 2019. Modern quantum materials support a wide variety of exotic and unanticipated states of quantum matter and differ radically in phenomenology from conventional systems such as metals, semiconductors, band insulators, and ferromagnets. For example, quantum materials exhibit states such as electron liquid crystals, fluids of fractionalized quantum particles, quantum-entangled spin liquids, and topologically protected composite quantum particles. However, predictive theory is not fully developed for these forms of electronic quantum matter (EQM) and exploratory empirical research is required to discover and understand their properties. One of the most powerful and productive new techniques to achieve this is direct visualization of EQM at the atomic scale. For EQM, as with many highly complex systems in nature, seeing is believing and understanding. Here we describe the experimental, theoretical and analysis techniques of atomic-resolution spectroscopic imaging scanning tunneling microscopy (SI-STM) that allow such complex and enigmatic electronic/magnetic states to be directly visualized, identified, and understood.

Spin dynamics and field-induced magnetic phase transition in the honeycomb Kitaev magnet α-Li2IrO3

Physical Review B American Physical Society 99 (2019) 054426

S Choi, S Manni, J Singleton, CV Topping, T Lancaster, SJ Blundell, DT Adroja, V Zapf, P Gegenwart, R Coldea

The layered honeycomb iridate α-Li2IrO3 displays an incommensurate magnetic structure with counterrotating moments on nearest-neighbor sites, proposed to be stabilized by strongly frustrated anisotropic Kitaev interactions between spin-orbit entangled Ir4+ magnetic moments. Here we report powder inelastic neutron scattering measurements that observe sharply dispersive low-energy magnetic excitations centered at the magnetic ordering wave vector, attributed to Goldstone excitations of the incommensurate order, as well as an additional intense mode above a gap 2.3 meV. Zero-field muon-spin relaxation measurements show clear oscillations in the muon polarization below the Néel temperature TN 15 K with a time-dependent profile consistent with bulk incommensurate long-range magnetism. Pulsed-field magnetization measurements observe that only about half the saturation magnetization value is reached at the maximum field of 64 T. A clear anomaly near 25 T indicates a transition to a phase with reduced susceptibility. The transition field has a Zeeman energy comparable to the zero-field gapped mode, suggesting gap suppression as a possible mechanism for the field-induced transition.

A.C. susceptibility as a probe of low-frequency magnetic dynamics

Journal of Physics: Condensed Matter IOP Publishing 31 (2018)

C Topping, S Blundell

The experimental technique of a.c. susceptibility can be used as a probe of magnetic dynamics in a wide variety of systems. Its use is restricted to the low- frequency regime and thus is sensitive to relatively slow processes. Rather than measuring the dynamics of single spins, a.c. susceptibility can be used to probe the dynamics of collective objects, such as domain walls in ferromagnets or vortex matter in superconductors. In some frustrated systems, such as spin glasses, the complex interactions lead to substantial spectral weight of fluctuations in the low-frequency regime, and thus a.c. susceptibility can play a unique role. We review the theory underlying the technique and magnetic dynamics more generally and give applications of a.c. susceptibility to a wide variety of experimental situations.

Unconventional field-induced spin gap in an S=1/2 Chiral staggered chain

Physical Review Letters American Physical Society 122 (2019) 057207-

J Liu, S Kittaka, R Johnson, T Lancaster, J Singleton, T Sakakibara, Y Kohama, J Van Tol, A Ardavan, BH Williams, SJ Blundell, ZE Manson, JL Manson, PA Goddard

We investigate the low-temperature magnetic properties of the molecule-based chiral spin chain ½CuðpymÞðH2OÞ4SiF6 · H2O (pym ¼ pyrimidine). Electron-spin resonance, magnetometry and heat capacity measurements reveal the presence of staggered g tensors, a rich low-temperature excitation spectrum, a staggered susceptibility, and a spin gap that opens on the application of a magnetic field. These phenomena are reminiscent of those previously observed in nonchiral staggered chains, which are explicable within the sine-Gordon quantum-field theory. In the present case, however, although the sineGordon model accounts well for the form of the temperature dependence of the heat capacity, the size of the gap and its measured linear field dependence do not fit with the sine-Gordon theory as it stands. We propose that the differences arise due to additional terms in the Hamiltonian resulting from the chiral structure of ½CuðpymÞðH2OÞ4SiF6 · H2O, particularly a uniform Dzyaloshinskii-Moriya coupling and a fourfold periodic staggered field.

Manipulating quantum materials with quantum light (vol 99, 085116, 2019)

Physical Review B (2019)

MARTIN Kiffner, F Schlawin, A Ardavan, DIETER Jaksch

© 2019 American Physical Society. The interaction Hamiltonian (Formula Presented) Eq. (14) describing the interaction between the cavity and the electronic system was obtained by expanding the Peierls Hamiltonian in Eq. (A4) up to first order in the small parameter (Formula Presented) All results presented in the paper are consistent with this appro imate interaction Hamiltonian, leading to an effective Hamiltonian that depends quadratically on. However, it turns out that a straightforward improvement of the parameters entering the effective Hamiltonian in Eq. (26) can be obtained by including the second-order term in the Peierls Hamiltonian in Eq. (A4). This term gives rise to modifications of our results that are also of order through a renormalization of the nearest-neighbor hopping amplitude (Formula Presented) The authors would like to thank M. A. Sentef for bringing the importance of the second-order term in Eq. (A4) to our attention.

Phase transitions, broken symmetry and the renormalization group

in The Routledge Handbook of Emergence, (2019) 237-247

SJ Blundell

© 2019 selection and editorial matter, Sophie Gibb, Robin Findlay Hendry, and Tom Lancaster. All rights reserved. The renormalization group should probably be called the renormalization semigroup, but sometimes, contradictory terminology sticks. The renormalization group procedure provides important insights because it shows quantitatively how fine-scale structure is progressively ignored and the physics of critical phenomena depend on these larger-scale, what students might call "structural", features of the theory. The renormalization group breaks big problems down into small ones. Broken symmetry can be seen as a well-studied paradigm of emergent behaviour in the physical world. By breaking symmetry, these phases forfeit the status of being a "stationary state" of the sort beloved of elementary quantum mechanics treatments. Phase transitions are sharp and there is a clear delineation between the ordered and disordered states. The set of symmetry-breaking phase transitions includes as members those between the ferromagnetic and paramagnetic states and those between the superconducting and normal metal states of certain materials.

Manipulating quantum materials with quantum light

Physical Review B American Physical Society 99 (2019) 085116-

M Kiffner, J Coulthard, F Schlawin, A Ardavan, D Jaksch

We show that the macroscopic magnetic and electronic properties of strongly correlated electron systems can be manipulated by coupling them to a cavity mode. As a paradigmatic example we consider the Fermi-Hubbard model and find that the electron-cavity coupling enhances the magnetic interaction between the electron spins in the ground-state manifold. At half filling this effect can be observed by a change in the magnetic susceptibility. At less than half filling, the cavity introduces a next-nearest-neighbor hopping and mediates a long-range electron-electron interaction between distant sites. We study the ground-state properties with tensor network methods and find that the cavity coupling can induce a phase characterized by a momentum-space pairing effect for electrons.

Hyperfine interaction of individual atoms on a surface

Science American Association for the Advancement of Science 362 (2018) 336-339

P Willke, Y Bae, K Yang, JL Lado, A Ferron, T Choi, A Ardavan, J Fernández-Rossier, AJ Heinrich, CP Lutz

Taking advantage of nuclear spins for electronic structure analysis, magnetic resonance imaging, and quantum devices hinges on knowledge and control of the surrounding atomic-scale environment. We measured and manipulated the hyperfine interaction of individual iron and titanium atoms placed on a magnesium oxide surface by using spin-polarized scanning tunneling microscopy in combination with single-atom electron spin resonance. Using atom manipulation to move single atoms, we found that the hyperfine interaction strongly depended on the binding configuration of the atom. We could extract atom- and position-dependent information about the electronic ground state, the state mixing with neighboring atoms, and properties of the nuclear spin. Thus, the hyperfine spectrum becomes a powerful probe of the chemical environment of individual atoms and nanostructures.

Molecular electronic spin qubits from a spin-frustrated trinuclear copper complex

Chemical Communications Royal Society of Chemistry 54 (2018) 12934-12937

B Kintzel, M Bohme, J Liu, A Burkhardt, J Mrozek, A Buchholz, A Ardavan, W Plass

The trinuclear copper(II) complex [Cu3(saltag)(py)6]ClO4 (H5saltag = tris(2-hydroxybenzylidene)triaminoguanidine) was synthesized and characterized by experimental as well as theoretical methods. This complex exhibits a strong antiferromagnetic coupling (J = −298 cm−1) between the copper(II) ions, mediated by the N–N diazine bridges of the tritopic ligand, leading to a spin-frustrated system. This compound shows a T2 coherence time of 340 ns in frozen pyridine solution, which extends to 591 ns by changing the solvent to pyridine-d5. Hence, the presented compound is a promising candidate as a building block for molecular spintronics.

Observation of a crossover from nodal to gapped superconductivity in LuxZr1-xB12

PHYSICAL REVIEW B 98 (2018) ARTN 094505

FKK Kirschner, NE Sluchanko, VB Filipov, FL Pratt, C Baines, NY Shitsevalova, SJ Blundell

Publisher Correction: Magnetic edge states and coherent manipulation of graphene nanoribbons.

Nature (2018)

M Slota, A Keerthi, WILLIAM Myers, E Tretyakov, M Baumgarten, ARZHANG Ardavan, H Sadeghi, CJ Lambert, A Narita, K Müllen, LAPO Bogani

In Fig. 1 of this Letter, there should have been two nitrogen (N) atoms at the 1,3-positions of all the blue chemical structures (next to the oxygen atoms), rather than one at the 2-position. The figure has been corrected online, and the original incorrect figure is shown as Supplementary Information to the accompanying Amendment.

Electrically controlled nuclear polarization of individual atoms

Nature Nanotechnology Nature Publishing Group 13 (2018) 1120–1125-

K Yang, P Willke, Y Bae, A Ferrón, JL Lado, A Ardavan, J Fernández-Rossier, AJ Heinrich, CP Lutz

Nuclear spins serve as sensitive probes in chemistry1 and materials science2 and are promising candidates for quantum information processing3,4,5,6. NMR, the resonant control of nuclear spins, is a powerful tool for probing local magnetic environments in condensed matter systems, which range from magnetic ordering in high-temperature superconductors7,8 and spin liquids9 to quantum magnetism in nanomagnets10,11. Increasing the sensitivity of NMR to the single-atom scale is challenging as it requires a strong polarization of nuclear spins, well in excess of the low polarizations obtained at thermal equilibrium, as well as driving and detecting them individually4,5,12. Strong nuclear spin polarization, known as hyperpolarization, can be achieved through hyperfine coupling with electron spins2. The fundamental mechanism is the conservation of angular momentum: an electron spin flips and a nuclear spin flops. The nuclear hyperpolarization enables applications such as in vivo magnetic resonance imaging using nanoparticles13, and is harnessed for spin-based quantum information processing in quantum dots14 and doped silicon15,16,17. Here we polarize the nuclear spins of individual copper atoms on a surface using a spin-polarized current in a scanning tunnelling microscope. By employing the electron–nuclear flip-flop hyperfine interaction, the spin angular momentum is transferred from tunnelling electrons to the nucleus of individual Cu atoms. The direction and magnitude of the nuclear polarization is controlled by the direction and amplitude of the current. The nuclear polarization permits the detection of the NMR of individual Cu atoms, which is used to sense the local magnetic environment of the Cu electron spin.

Common glass-forming spin-liquid state in the pyrochlore magnets Dy2Ti2 O7 and Ho2Ti2 O7

Physical Review B 98 (2018)

AB Eyvazov, R Dusad, TJS Munsie, HA Dabkowska, GM Luke, ER Kassner, JCS Davis, A Eyal

© 2018 American Physical Society. Despite a well-ordered pyrochlore crystal structure and strong magnetic interactions between the Dy3+ or Ho3+ ions, no long-range magnetic order has been detected in the pyrochlore titanates Ho2Ti2O7 and Dy2Ti2O7. To explore the actual magnetic phase formed by cooling these materials, we measure their magnetization dynamics using toroidal, boundary-free magnetization transport techniques. We find that the dynamical magnetic susceptibility of both compounds has the same distinctive phenomenology, which is indistinguishable in form from that of the dielectric permittivity of dipolar glass-forming liquids. Moreover, Ho2Ti2O7 and Dy2Ti2O7 both exhibit microscopic magnetic relaxation times that increase along the super-Arrhenius trajectories analogous to those observed in glass-forming dipolar liquids. Thus, upon cooling below about 2 K, Dy2Ti2O7 and Ho2Ti2O7 both appear to enter the same magnetic state exhibiting the characteristics of a glass-forming spin liquid.

Phase diagram of Bi2Sr2CaCu2O8+δ revisited.

Nature communications 9 (2018) 5210-

IK Drozdov, I Pletikosić, C-K Kim, K Fujita, GD Gu, JCS Davis, PD Johnson, I Božović, T Valla

In cuprate superconductors, the doping of carriers into the parent Mott insulator induces superconductivity and various other phases whose characteristic temperatures are typically plotted versus the doping level p. In most materials, p cannot be determined from the chemical composition, but it is derived from the superconducting transition temperature, Tc, using the assumption that the Tc dependence on doping is universal. Here, we present angle-resolved photoemission studies of Bi2Sr2CaCu2O8+δ, cleaved and annealed in vacuum or in ozone to reduce or increase the doping from the initial value corresponding to Tc = 91 K. We show that p can be determined from the underlying Fermi surfaces and that in-situ annealing allows mapping of a wide doping regime, covering the superconducting dome and the non-superconducting phase on the overdoped side. Our results show a surprisingly smooth dependence of the inferred Fermi surface with doping. In the highly overdoped regime, the superconducting gap approaches the value of 2Δ0 = (4 ± 1)kBTc.

Imaging orbital-selective quasiparticles in the Hund's metal state of FeSe.

Nature materials 17 (2018) 869-874

A Kostin, PO Sprau, A Kreisel, YX Chong, AE Böhmer, PC Canfield, PJ Hirschfeld, BM Andersen, JCS Davis

Strong electronic correlations, emerging from the parent Mott insulator phase, are key to copper-based high-temperature superconductivity. By contrast, the parent phase of an iron-based high-temperature superconductor is never a correlated insulator. However, this distinction may be deceptive because Fe has five actived d orbitals while Cu has only one. In theory, such orbital multiplicity can generate a Hund's metal state, in which alignment of the Fe spins suppresses inter-orbital fluctuations, producing orbitally selective strong correlations. The spectral weights Zm of quasiparticles associated with different Fe orbitals m should then be radically different. Here we use quasiparticle scattering interference resolved by orbital content to explore these predictions in FeSe. Signatures of strong, orbitally selective differences of quasiparticle Zm appear on all detectable bands over a wide energy range. Further, the quasiparticle interference amplitudes reveal that [Formula: see text], consistent with earlier orbital-selective Cooper pairing studies. Thus, orbital-selective strong correlations dominate the parent state of iron-based high-temperature superconductivity in FeSe.

Quantum magnetism in molecular spin ladders probed with muonspin spectroscopy


T Lancaster, F Xiao, BM Huddart, RC Williams, FL Pratt, SJ Blundell, SJ Clark, R Scheuermann, T Goko, S Ward, JL Manson, C Ruegg, KW Kramer

Multigap Superconductivity in RbCa2Fe4As4F2 Investigated Using mu SR Measurements


DT Adroja, FKK Kirschner, F Lang, M Smidman, AD Hillier, Z-C Wang, G-H Cao, GBG Stenning, SJ Blundell