Publications associated with Atmospheric Processes

Climate SPHINX: evaluating the impact of resolution and stochastic physics parameterisations in climate simulations

Geoscientific Model Development European Geosciences Union (0)

P Davini, J von Hardenberg, S Corti, HM Christensen, S Juricke, A Subramanian, PAG Watson, A Weisheimer, TN Palmer

<jats:p>&amp;lt;p&amp;gt;&amp;lt;strong&amp;gt;Abstract.&amp;lt;/strong&amp;gt; The Climate SPHINX (Stochastic Physics HIgh resolutioN eXperiments) project is a comprehensive set of ensemble simulations aimed at evaluating the sensitivity of present and future climate to model resolution and stochastic parameterisation. The EC-Earth Earth-System Model is used to explore the impact of stochastic physics in a large ensemble of 30-year climate integrations at five different atmospheric horizontal resolutions (from 125&amp;amp;#8201;km up to 16&amp;amp;#8201;km). The project includes more than 120 simulations in both a historical scenario (1979&amp;amp;#8211;2008) and a climate change projection (2039&amp;amp;#8211;2068), together with coupled transient runs (1850&amp;amp;#8211;2100). A total of 20.4&amp;amp;#8201;million core hours have been used, made available from a single year grant from PRACE (the Partnership for Advanced Computing in Europe), and close to 1.5&amp;amp;#8201;PBytes of output data have been produced on SuperMUC IBM Petascale System at the Leibniz Supercomputing Center (LRZ) in Garching, Germany. About 140&amp;amp;#8201;TBytes of post-processed data are stored on the CINECA supercomputing center archives and are freely accessible to the community thanks to an EUDAT Data Pilot project. This paper presents the technical and scientific setup of the experiments, including the details on the forcing used for the simulations performed, defining the SPHINX v1.0 protocol. In addition, an overview of preliminary results is given: an improvement in the simulation of Euro-Atlantic atmospheric blocking following resolution increases is observed. It is also shown that including stochastic parameterisation in the low resolution runs helps to improve some aspects of the tropical climate &amp;amp;#8211; specifically the Madden-Julian Oscillation and the tropical rainfall variability. These findings show the importance of representing the impact of small scale processes on the large scale climate variability either explicitly (with high resolution simulations) or stochastically (in low resolution simulations).&amp;lt;/p&amp;gt; </jats:p>

Show full publication list