Publications


Pixel imaging mass spectrometry with fast silicon detectors

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2010)

A Nomerotski, S Adigun-Boaye, M Brouard, E Campbell, A Clark, J Crooks, JJ John, AJ Johnsen, C Slater, R Turchetta, C Vallance, E Wilman, WH Yuen


Comparison of measurements of charge transfer inefficiencies in a CCD with high-speed column parallel readout

IEEE Transactions on Nuclear Science 57 (2010) 854-859

A Sopczak, S Aoulmit, K Bekhouche, C Bowdery, C Buttar, C Damerell, D Djendaoui, L Dehimi, R Gao, T Greenshaw, M Koziel, D Maneuski, A Nomerotski, N Sengouga, K Stefanov, T Tikkanen, T Woolliscroft, S Worm, Z Zhang

Charge Coupled Devices (CCDs) have been successfully used in several high energy physics experiments over the past two decades. Their high spatial resolution and thin sensitive layers make them an excellent tool for studying short-lived particles. The Linear Collider Flavour Identification (LCFI) Collaboration has been developing Column-Parallel CCDs for the vertex detector of a future Linear Collider which can be read out many times faster than standard CCDs. The most recent studies are of devices designed to reduce both the CCD's intergate capacitance and the clock voltages necessary to drive it. A comparative study of measured Charge Transfer Inefficiency values between our previous and new results for a range of operating temperatures is presented. © 2010 IEEE.


The ATLAS Simulation Infrastructure

European Physical Journal C 70 (2010) 823-874

The ATLAS Collaboration, G Aad, B Abbott, J Abdallah, AA Abdelalim, A Abdesselam, O Abdinov, B Abi, M Abolins, H Abramowicz, H Abreu, BS Acharya, DL Adams, TN Addy, J Adelman, C Adorisio, P Adragna, T Adye, S Aefsky, JA Aguilar-Saavedra, M Aharrouche, SP Ahlen, F Ahles, A Ahmad, H Ahmed, M Ahsan, G Aielli, T Akdogan, TPA Åkesson, G Akimoto, AV Akimov, A Aktas, MS Alam, MA Alam, S Albrand, M Aleksa, IN Aleksandrov, C Alexa, G Alexander, G Alexandre, T Alexopoulos, M Alhroob, M Aliev, G Alimonti, J Alison, M Aliyev, PP Allport, SE Allwood-Spiers, J Almond, A Aloisio, R Alon, A Alonso, MG Alviggi, K Amako, C Amelung, A Amorim, G Amorós, N Amram, C Anastopoulos, T Andeen, CF Anders, KJ Anderson, A Andreazza, V Andrei, XS Anduaga, A Angerami, F Anghinolfi, N Anjos, A Annovi, A Antonaki, M Antonelli, S Antonelli, J Antos, B Antunovic, F Anulli, S Aoun, G Arabidze, I Aracena, Y Arai, ATH Arce, JP Archambault, S Arfaoui, JF Arguin, T Argyropoulos, M Arik, AJ Armbruster, O Arnaez, C Arnault, A Artamonov, D Arutinov, M Asai, S Asai, R Asfandiyarov, S Ask, B Åsman, D Asner, L Asquith, K Assamagan, A Astbury, A Astvatsatourov

The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the ATLAS simulation infrastructure. In this paper, that infrastructure is discussed, including that supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors. Also described are the tools allowing the software validation, performance testing, and the validation of the simulated output against known physics processes. © 2010 CERN for the benefit of the ATLAS collaboration.


Comparison of Measurements of Charge Transfer Inefficiencies in a CCD With High-Speed Column Parallel Readout

IEEE TRANSACTIONS ON NUCLEAR SCIENCE 57 (2010) 854-859

A Sopczak, S Aoulmit, K Bekhouche, C Bowdery, C Buttar, C Damerell, D Djendaoui, L Dehimi, R Gao, T Greenshaw, M Koziel, D Maneuski, A Nomerotski, N Sengouga, K Stefanov, T Tikkanen, T Woolliscroft, S Worm, Z Zhang


The ATLAS Collaboration

Nuclear Physics A 830 (2009) 925c-940c

G Aad, B Abbott, J Abdallah, AA Abdelalim, A Abdesselam, O Abdinov, B Abi, M Abolins, H Abramowicz, E Acerbi, BS Acharya, DL Adams, TN Addy, J Adelman, C Adorisio, P Adragna, T Adye, S Aefsky, JA Aguilar-Saavedra, M Aharrouche, SP Ahlen, F Ahles, A Ahmad, H Ahmed, M Ahsan, G Aielli, T Akdogan, TPA Åkesson, G Akimoto, AV Akimov, MS Alam, MA Alam, J Albert, S Albrand, M Aleksa, IN Aleksandrov, C Alexa, G Alexander, G Alexandre, T Alexopoulos, M Alhroob, M Aliev, G Alimonti, J Alison, M Aliyev, PP Allport, SE Allwood-Spiers, A Aloisio, R Alon, A Alonso, MG Alviggi, K Amako, C Amelung, VV Ammosov, A Amorim, G Amorós, N Amram, C Anastopoulos, CF Anders, KJ Anderson, A Andreazza, V Andrei, XS Anduaga, A Angerami, F Anghinolfi, N Anjos, A Antonaki, M Antonelli, S Antonelli, B Antunovic, F Anulli, G Arabidze, I Aracena, Y Arai, ATH Arce, JP Archambault, S Arfaoui, JF Arguin, T Argyropoulos, M Arik, AJ Armbruster, O Arnaez, C Arnault, A Artamonov, D Arutinov, M Asai, S Asai, R Asfandiyarov, S Ask, B Åsman, D Asner, L Asquith, K Assamagan, A Astbury, A Astvatsatourov, G Atoian, B Auerbach, E Auge, K Augsten, M Aurousseau


Readout chip for Column Parallel CCD, CPR2A

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 607 (2009) 640-647

M Havranek, P Murray, K Stefanov, S Thomas, C Damerell, J Fopma, J Goldstein, T Greenshaw, B Hawes, A Nomerotski, T Woolliscroft, S Worm, Z Zhang

The LCFI Collaboration is developing the sensors, readout electronics and mechanical support structures for the vertex detector (VXD) of the International Linear Collider (ILC), as well as studying the physics performance that the VXD will achieve. Since the VXD must provide excellent spatial resolution, the sensors must have very low mass and their power consumption must be small to ensure that the sensors themselves cause as little multiple scattering as possible and that gas cooling can be used to operate them at temperatures of about -40 C. High-speed readout is also needed to ensure that the occupancy due to the pair production background at the ILC is kept below the 1% level. In order to satisfy these strict requirements, Column Parallel CCDs (CPCCDs) and Column Parallel Readout chips (CPRs) have been developed. The readout chips must be able to operate synchronously with the CPCCDs and ensure fast signal processing with low noise and data compression. The design and performance of the latest version of the readout chip, the CPR2A, are described here. © 2009 Elsevier B.V.


Comparison of measurements of charge transfer inefficiencies in a CCD with high-speed column parallel readout

IEEE Nuclear Science Symposium Conference Record (2009) 836-841

A Sopczak, S Aoulmit, K Bekhouche, C Bowdery, C Buttar, C Damerell, D Djendaoui, L Dehimi, R Gao, T Greenshaw, M Koziel, D Maneuski, A Nomerotski, N Sengouga, K Stefanov, T Tikkanen, T Woolliscroft, S Worm, Z Zhang

Charge Coupled Devices (CCDs) have been successfully used in several high energy physics experiments over the past two decades. Their high spatial resolution and thin sensitive layers make them an excellent tool for studying short-lived particles. The Linear Collider Flavour Identification (LCFI) Collaboration has been developing Column-Parallel CCDs for the vertex detector of a future Linear Collider which can be read out many times faster than standard CCDs. The most recent studies are of devices designed to reduce both the CCD's intergate capacitance and the clock voltages necessary to drive it. A comparative study of measured Charge Transfer Inefficiency values between our previous and new results for a range of operating temperatures is presented. ©2009 IEEE.


The LCFIVertex package: Vertexing, flavour tagging and vertex charge reconstruction with an ILC vertex detector

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 610 (2009) 573-589

D Bailey, E Devetak, M Grimes, K Harder, S Hillert, D Jackson, T Pinto Jayawardena, B Jeffery, T Lastovicka, C Lynch, V Martin, R Walsh, P Allport, Y Banda, C Buttar, A Cheplakov, D Cussans, C Damerell, N De Groot, J Fopma, B Foster, S Galagedera, R Gao, A Gillman, J Goldstein, T Greenshaw, R Halsall, B Hawes, K Hayrapetyan, H Heath, J John, E Johnson, N Kundu, A Laing, G Lastovicka-Medin, W Lau, Y Li, A Lintern, S Mandry, P Murray, A Nichols, A Nomerotski, R Page, C Parkes, C Perry, V O'Shea, A Sopczak, K Stefanov, H Tabassam, S Thomas, T Tikkanen, R Turchetta, M Tyndel, J Velthuis, G Villani, T Wijnen, T Woolliscroft, S Worm, S Yang, Z Zhang

The precision measurements envisaged at the International Linear Collider (ILC) depend on excellent instrumentation and reconstruction software. The correct identification of heavy flavour jets, placing unprecedented requirements on the quality of the vertex detector, will be central for the ILC programme. This paper describes the LCFIVertex software, which provides tools for vertex finding and for identification of the flavour and charge of the leading hadron in heavy flavour jets. These tools are essential for the ongoing optimisation of the vertex detector design for linear colliders such as the ILC. The paper describes the algorithms implemented in the LCFIVertex package as well as the scope of the code and its performance for a typical vertex detector design. Crown Copyright © 2009.


Planar transformers for column parallel CCD clock drive

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 609 (2009) 122-128

B Hawes, D Cussans, C Damerell, E Devetak, J Fopma, R Gao, J Goldstein, T Greenshaw, S Hillert, N Kundu, A Nomerotski, C Perry, K Stefanov, S Thomas, S Worm

The LCFI Collaboration is developing the sensors, readout electronics and mechanical support structures for the Vertex Detector (VXD) of the International Linear Collider (ILC). High-speed readout is needed to ensure that the occupancy due to the pair production background at the ILC is kept below 1% level. In order to satisfy this requirement, Column Parallel CCDs (CPCCDs) and Column Parallel Readout chips (CPRs) have been developed. The CPCCD has to operate at a clock frequency of 50 MHz, which represents a difficult technical challenge due to the relatively large sensor capacitance. The design and performance of planar transformers, which can be used to provide the required 20 A clock current, are described. © 2009 Elsevier B.V. All rights reserved.


Charge shielding in the In-situ Storage Image Sensor for a vertex detector at the ILC

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 607 (2009) 538-543

Z Zhang, KD Stefanov, D Bailey, Y Banda, C Buttar, A Cheplakov, D Cussans, C Damerell, E Devetak, J Fopma, B Foster, R Gao, A Gillman, J Goldstein, T Greenshaw, M Grimes, R Halsall, K Harder, B Hawes, K Hayrapetyan, H Heath, S Hillert, D Jackson, T Pinto Jayawardena, B Jeffery, J John, E Johnson, N Kundu, A Laing, T Lastovicka, W Lau, Y Li, A Lintern, C Lynch, S Mandry, V Martin, P Murray, A Nichols, A Nomerotski, R Page, C Parkes, C Perry, V O'Shea, A Sopczak, H Tabassam, S Thomas, T Tikkanen, J Velthuis, R Walsh, T Woolliscroft, S Worm

The Linear Collider Flavour Identification (LCFI) collaboration has successfully developed the first prototype of a novel particle detector, the In-situ Storage Image Sensor (ISIS). This device ideally suits the challenging requirements for the vertex detector at the future International Linear Collider (ILC), combining the charge storing capabilities of the Charge-Coupled Devices (CCD) with readout commonly used in CMOS imagers. The ISIS avoids the need for high-speed readout and offers low power operation combined with low noise, high immunity to electromagnetic interference and increased radiation hardness compared to typical CCDs. The ISIS is one of the most promising detector technologies for vertexing at the ILC. In this paper we describe the measurements on the charge-shielding properties of the p-well, which is used to protect the storage register from parasitic charge collection and is at the core of device's operation. We show that the p-well can suppress the parasitic charge collection by almost two orders of magnitude, satisfying the requirements for the application. Crown Copyright © 2009.


The evaporative cooling system for the ATLAS inner detector

Journal of Instrumentation 3 (2008)

D Attree, B Anderson, EC Anderssen, V Akhnazarov, RJ Apsimon, P Barclay, LE Batchelor, RL Bates, M Battistin, J Bendotti, S Berry, A Bitadze, P Bizzel, P Bonneau, M Bosteels, JM Butterworth, S Butterworth, AA Carter, JR Carter, A Catinaccio, F Corbaz, HO Danielsson, E Danilevich, N Dixon, SD Dixon, F Doherty, O Dorholt, M Doubrava, I Egorov, K Egorov, K Einsweiler, AC Falou, P Feraudet, P Ferrari, K Fowler, JT Fraser, RS French, M Galuska, F Gannaway, G Gariano, MD Gibson, M Gilchriese, D Giugni, J Godlewski, I Gousakov, B Gorski, GD Hallewell, N Hartman, RJ Hawkings, SJ Haywood, NP Hessey, S Infante, JN Jackson, TJ Jones, J Kaplon, S Katunin, S Lindsay, L Luisa, N Massol, F McEwan, J McMahon, C Menot, J Mistry, J Morris, DM Muskett, K Nagai, A Nichols, R Nicholson, RB Nickerson, SL Nielsen, PE Nordahl, M Olcese, M Parodi, F Perez-Gomez, H Pernegger, E Perrin, LP Rossi, A Rovani, E Ruscino, H Sandaker, A Smith, V Sopko, S Stapnes, M Stodulski, J Tarrant, J Thadome, D Tovey, M Turala, M Tyndel, V Vacek, E Van Der Kraaij, GHA Viehhauser, E Vigeolas, PS Wells, S Wenig, P Werneke

This paper describes the evaporative system used to cool the silicon detector structures of the inner detector sub-detectors of the ATLAS experiment at the CERN Large Hadron Collider. The motivation for an evaporative system, its design and construction are discussed. In detail the particular requirements of the ATLAS inner detector, technical choices and the qualification and manufacture of final components are addressed. Finally results of initial operational tests are reported. Although the entire system described, the paper focuses on the on-detector aspects. Details of the evaporative cooling plant will be discussed elsewhere. © 2008 IOP Publishing Ltd and SISSA.


The evaporative cooling system for the ATLAS inner detector

JOURNAL OF INSTRUMENTATION 3 (2008) ARTN P07003

D Attree, B Anderson, EC Anderssen, V Akhnazarov, RJ Apsimon, P Barclay, LE Batchelor, RL Bates, M Battistin, J Bendotti, S Berry, A Bitadze, JP Bizzel, P Bonneau, M Bosteels, JM Butterworth, S Butterworth, AA Carter, JR Carter, A Catinaccio, F Corbaz, HO Danielsson, E Danilevich, N Dixon, SD Dixon, F Doherty, O Dorholt, M Doubrava, I Egorov, K Egorov, K Einsweiler, AC Falou, P Feraudet, P Ferrari, K Fowler, JT Fraser, RS French, M Galuska, F Gannaway, G Gariano, MD Gibson, M Gilchriese, D Giugni, J Godlewski, I Gousakov, B Gorski, GD Hallewell, N Hartman, RJ Hawkings, SJ Haywood, NP Hessey, S Infante, JN Jackson, TJ Jones, J Kaplon, S Katunin, S Lindsay, L Luisa, N Massol, F McEwan, J McMahon, C Menot, J Mistry, J Morris, M Muskett, K Nagai, A Nichols, R Nicholson, RB Nickerson, SL Nielsen, PE Nordahl, M Olcese, M Parodi, F Perez-Gomez, H Pernegger, E Perrin, LP Rossi, A Rovani, E Ruscino, H Sandaker, A Smith, V Sopko, S Stapnes, M Stodulski, J Tarrant, J Thadome, D Tovey, M Turala, M Tyndel, V Vacek, E van der Kraaij, GHA Viehhauser, E Vigeolas, PS Wells, S Wenig, P Wernekev


The integration and engineering of the ATLAS SemiConductor Tracker Barrel

Journal of Instrumentation 3 (2008)

A Abdesselam, P Allport, C Anastopoulos, B Anderson, L Andricek, F Anghinolfi, R Apsimon, T Atkinson, J Attree, N Austin, A Bangert, G Barbier, P Barclay, J Barr, E Batchelor, L Bates, R Batley, A Beck, J Bell, H Bell, A Belymam, J Benes, P Benes, J Bernabeu, S Bethke, P Bizzell, J Blocki, J Bohm, N Booth, V Bouhova-Thacker, O Brandt, J Brodbeck, Z Broklova, J Broz, A Bruckman De Renstrom, S Burdin, M Buttar, M Butterworth, E Capocci, C Carpentieri, A Carter, R Carter, A Catinaccio, R Catmore, M Chamizo Llatas, G Charlton, A Cheplakov, A Chilingarov, S Chouridou, D Chren, L Chu, V Cindro, A Ciocio, V Civera, A Clark, P Colijn, J Costa, D Costanzo, J Cox, C Dabinett, W Dabrowski, J Dalmau, M Danielsen, S D'Auria, I Dawson, P De Jong, D Dehchar, B Demirköz, P Dervan, S Diez Cornell, D Dixon, E Dobson, Z Dolezal, M Donega, M D'Onofrio, O Dorholt, M Doubrava, D Dowell, Z Drasal, P Duerdoth, R Duxfield, M Dwuznik, S Eckert, M Eklund, R Ely, C Escobar, V Fadeyev, D Fasching, F Fawzi, L Feld, D Ferguson, P Ferrari, D Ferrere, J Fopma, P Ford, R Fortin, M Foster, H Fox, J Fraser, J Freestone

The ATLAS SemiConductor Tracker (SCT) was built in three sections: a barrel and two end-caps. This paper describes the design, construction and final integration of the barrel section. The barrel is constructed around four nested cylinders that provide a stable and accurate support structure for the 2112 silicon modules and their associated services. The emphasis of this paper is directed at the aspects of engineering design that turned a concept into a fully-functioning detector, as well as the integration and testing of large sub-sections of the final SCT barrel detector. The paper follows the chronology of the construction. The main steps of the assembly are described with the results of intermediate tests. The barrel service components were developed and fabricated in parallel so that a flow of detector modules, cooling loops, opto-harnesses and Frequency-Scanning-Interferometry (FSI) alignment structures could be assembled onto the four cylinders. Once finished, each cylinder was conveyed to the next site for the mounting of modules to form a complete single barrel. Extensive electrical and thermal function tests were carried out on the completed single barrels. In the next stage, the four single barrels and thermal enclosures were combined into the complete SCT barrel detector so that it could be integrated with the Transition Radiation Tracker (TRT) barrel to form the central part of the ATLAS inner detector. Finally, the completed SCT barrel was tested together with the TRT barrel in noise tests and using cosmic rays. © 2008 IOP Publishing Ltd and SISSA.


The ATLAS experiment at the CERN large hadron collider

Journal of Instrumentation 3 (2008)

G Aad, E Abat, J Abdallah, AA Abdelalim, A Abdesselam, O Abdinov, BA Abi, M Abolins, H Abramowicz, E Acerbi, BS Acharya, R Achenbach, M Ackers, DL Adams, F Adamyan, TN Addy, M Aderholz, C Adorisio, P Adragna, M Aharrouche, SP Ahlen, F Ahles, A Ahmad, H Ahmed, G Aielli, PF Åkesson, TPA Akesson, AV Akimov, SM Alam, J Albert, S Albrand, M Aleksa, IN Aleksandrov, M Aleppo, F Alessandria, C Alexa, G Alexander, T Alexopoulos, G Alimonti, M Aliyev, PP Allport, SE Allwood-Spiers, A Aloisio, J Alonso, R Alves, MG Alviggi, K Amako, P Amaral, SP Amaral, G Ambrosini, G Ambrosio, C Amelung, VV Ammosov, A Amorim, N Amram, C Anastopoulos, B Anderson, KJ Anderson, EC Anderssen, A Andreazza, V Andrei, L Andricek, ML Andrieux, XS Anduaga, F Anghinolfi, A Antonaki, M Antonelli, S Antonelli, R Apsimon, G Arabidze, I Aracena, Y Arai, ATH Arce, JP Archambault, JF Arguin, E Arik, M Arik, KE Arms, SR Armstrong, M Arnaud, C Arnault, A Artamonov, S Asai, S Ask, B Åsman, D Asner, L Asquith, K Assamagan, A Astbury, B Athar, T Atkinson, B Aubert, B Auerbach, E Auge, K Augsten, VM Aulchenko, N Austin, G Avolio, R Avramidou, A Axen


Combined performance tests before installation of the ATLAS Semiconductor and Transition Radiation Tracking Detectors

JOURNAL OF INSTRUMENTATION 3 (2008) ARTN P08003

E Abate, A Abdesselam, TN Addy, TPA Akesson, PP Allport, L Andricek, F Anghinolfi, R Apsimon, E Arik, M Arik, N Austin, OK Baker, E Banas, A Bangert, G Barbier, S Baron, AJ Barr, S Basiladze, LE Batchelor, RL Bates, JR Batley, M Battistin, GA Beck, A Beddall, AJ Beddall, PJ Bell, WH Bell, A Belymam, DP Benjamin, J Bernabeu, H Bertelsen, S Bethke, A Bingul, A Bitadze, JP Bizzell, J Blocki, A Bocci, M Bochenek, J Bohm, VG Bondarenko, P Bonneau, CN Booth, O Brandt, FM Brochu, Z Broklova, J Broz, PAB de Renstroman, S Burdin, CM Buttar, MC Garrido, LC Sas, C Carpentieri, AA Carter, JR Carter, A Catinaccio, SA Cetin, MC Ilatas, DG Charlton, A Cheplakov, S Chouridou, ML Chu, V Cindro, A Ciocio, JV Civera, A Clark, AP Colijn, T Cornelissen, MJ Costa, D Costanzo, J Cox, P Cwetanski, W Dabrowski, J Dalmau, M Dam, KM Danielsen, H Danielsson, S D'Auria, I Dawson, P de Jong, MD Dehchar, B Demirkoz, P Dervan, B Di Girolamo, SD Cornell, F Dittus, SD Dixon, E Dobson, OB Dogan, Z Dolezal, BA Dolgoshein, M Donega, M D'Onofrio, T Donszelmann, O Dorholt, JD Dowell, Z Drasal, N Dressnandt, C Driouchi, R Duxfield, M Dwuznik, WL Ebenstein, S Eckert, P Eerola, U Egede, K Egorov, LM Eklund, M Elsing, R Ely, V Eremin, C Escobar, H Evans, P Farthouat, D Fasching, OL Fedin, L Feld, D Ferguson, P Ferrari, D Ferrere, L Fiorini, J Fopma, AJ Fowler, H Fox, RS French, D Froidevaux, JA Frost, J Fuster, S Gadomski, P Gagnon, BJ Gallop, FC Gannaway, C Garcia, JEG Navarro, IL Gavrilenko, C Gay, N Ghodbane, MD Gibson, SM Gibson, KG Gnanvo, J Godlewski, T Goettfert, S Gonzalez, S Gonzalez-Sevilla, MJ Goodrick, A Gorisek, E Gornicki, M Goulette, Y Grishkevich, J Grognuz, J Grosse-Knetter, C Haber, R Haertel, Z Hajduk, M Hance, FH Hansen, JB Hansen, JD Hansen, PH Hansen, K Hara, HA Jr, M Hauschild, C Hauviller, BM Hawes, RJ Hawkings, HS Hayward, SJ Haywood, FEW Heinemann, NP Hessey, JC Hill, MC Hodgkinson, P Hodgson, TI Hollins, A Holmes, R Holt, S Hou, DF Howell, W Hulsbergen, T Huse, Y Ikegami, Y Ilyushenka, C Issever, JN Jackson, V Jain, K Jakobs, RC Jared, G Jarlskog, P Jarron, LG Johansen, P Johansson, M Jones, TJ Jones, D Joos, J Joseph, P Jovanovic, VA Kantserov, J Kaplon, MK Unel, F Kayumov, PT Keener, GD Kekelidze, N Kerschen, C Ketterer, SH Kim, D Kisielewska, B Kisielewski, T Kittelmann, EB Klinkby, P Kluit, S Kluth, BR Ko, P Kodys, T Koffas, E Koffeman, T Kohriki, T Kondo, NV Kondratieva, SP Konovalov, S Koperny, H Korsmo, S Kovalenko, TZ Kowalski, K Krueger, V Kramarenko, G Kramberger, M Kruse, P Kubik, LG Kudin, N Kundu, C Lacasta, VR Lacuesta, W Lau, A-C Le Bihan, S-C Lee, RP Lefevre, BC LeGeyt, KJC Leney, CG Lester, Z Liang, P Lichard, W Liebig, M Limper, A Lindahl, SW Lindsay, A Lipniacka, GL Llacer, S Lloyd, A Loginov, CW Loh, ML Fantoba, S Lucas, A Lucotte, I Ludwig, J Ludwig, F Luehring, L Luisa, J Lynn, M Maassen, D Macina, R Mackeprang, A Macpherson, CA Magrath, P Majewski, P Malecki, VP Maleev, I Mandic, M Mandl, M Mangin-Brinet, S Marti i Garcia, AJ Martin, FF Martin, T Maruyama, R Mashinistov, A Mayne, KW McFarlane, SJ McMahon, TJ McMahon, J Meinhardt, BRM Garcia, C Menot, I Messmer, B Mikulec, M Mikuz, S Mima, M Minano, B Mindur, VA Mitsou, P Modesto, S Moed, B Mohn, RMM Valls, J Morin, M-C Morone, SV Morozov, J Morris, HG Moser, A Moszczynski, SV Mouraviev, A Munar, WJ Murray, K Nagai, Y Nagai, D Naito, K Nakamura, I Nakano, SY Nesterov, FM Newcomer, R Nicholson, RB Nickerson, T Niinikoski, N Nikitin, R Nisius, H Ogren, SH Ohi, M Olcese, J Olszowska, M Orphanidesa, V O'Shea, W Ostrowicz, B Ottewell, O Oye, E Paganis, MJ Palmer, MA Parker, U Parzefall, MS Passmore, S Pataraia, G Pellegrini, H Pernegger, E Perrin, VD Peshekhonov, TC Petersen, R Petti, AW Phillips, PW Phillips, A Placci, K Poltorak, A Poppleton, MJ Price, K Prokofiev, O Rohne, C Rembser, P Reznicek, RH Richter, A Robichaud-Veronneau, D Robinson, S Roe, O Rohne, A Romaniouk, LP Rossi, D Rousseau, G Ruggiero, K Runge, YF Ryabov, A Salzburger, J Sanchez, H Sandaker, J Santander, VA Schegelsky, D Scheirich, J Schieck, MP Schmidt, C Schmitt, E Sedykh, DM Seliverstov, A Sfyrla, T Shin, A Shmeleva, S Sivoklokov, SY Smirnov, L Smirnova, O Smirnova, M Soederberg, AO Solberg, VV Sosnovtsev, LS Suay, H Spieler, G Sprachmann, E Stanecka, S Stapnes, J Stastny, M Stodulski, A Stradling, B Stugu, S Subramania, SI Suchkov, VV Sulin, RR Szczygiel, R Takashima, R Tanaka, G Tartarelli, PK Teng, S Terada, VO Tikhomirov, P Tipton, M Titov, K Toms, A Tonoyan, DR Tovey, A Tricoli, M Turala, M Tyndel, F Ukegawa, MU Comes, Y Unno, V Vacek, S Valkar, JAV Ferrer, E van der Kraaij, R VanBerg, VI Vassilakopoulos, L Vassilieva, T Vickey, GHA Viehhauser, EG Villani, JH Vossebeld, TV Anh, R Wall, RS Wallny, C Wang, CP Ward, R Wastie, M Webel, M Weber, AR Weidberg, PM Weilhammer, C Weiser, PS Wells, P Werneke, MJ White, D Whittington, A Wildauer, I Wilhelm, HH Williams, JA Wilson, MW Wolter, SL Wu, A Zhelezko, HZ Zhu, A Zsenei


Engineering for the ATLAS SemiConductor Tracker (SCT) End-cap

Journal of Instrumentation 3 (2008)

A Abdesselam, PP Allport, B Anderson, L Andricek, F Anghinolfi, RJ Apsimon, T Atkinson, A Austin, H Band, P Barclay, A Barr, LE Batchelor, RL Bates, JR Batley, G Beck, H Becker, P Bell, WH Bell, A Belymam, J Beneš, P Beneš, E Berbee, J Bernabeu, S Bethke, N Bingefors, JP Bizzell, ZJ Blaszczak, J Blocki, J Brož, J Bohm, R Brenner, TJ Brodbeck, PB De Renstrom, R Buis, G Burton, J Buskop, CM Buttar, JM Butterworth, S Butterworth, E Capocci, C Carpentieri, AA Carter, JR Carter, M Chamizo, DG Charlton, A Cheplakov, A Chilingarov, S Chouridou, D Chren, ML Chu, V Cindro, A Ciocio, JV Civera, A Clark, P Coe, AP Colijn, PA Cooke, MJ Costa, D Costanzo, M Curtis-Rous, C Dabinett, W Dabrowski, J Dalmau, KM Danielsen, S D'Auria, I Dawson, P De Jong, P Dervan, E Dobson, F Doherty, Z Doležal, M Donega, M D'Onofrio, O Dorholt, M Doubrava, IP Duerdoth, C Duisters, R Duxfield, M Dwuznik, S Eckert, L Eklund, C Escobar, DL Evans, V Fadeyev, D Fasching, L Feld, DPS Ferguson, P Ferrari, D Ferrere, J Fopma, P Ford, R Fortin, JM Foster, H Fox, TJ Fraser, J Freestone, RS French, J Fuster, BJ Gallop, M Galuska

The ATLAS SemiConductor Tracker (SCT) is a silicon-strip tracking detector which forms part of the ATLAS inner detector. The SCT is designed to track charged particles produced in proton-proton collisions at the Large Hadron Collider (LHC) at CERN at an energy of 14 TeV. The tracker is made up of a central barrel and two identical end-caps. The barrel contains 2112 silicon modules, while each end-cap contains 988 modules. The overall tracking performance depends not only on the intrinsic measurement precision of the modules but also on the characteristics of the whole assembly, in particular, the stability and the total material budget. This paper describes the engineering design and construction of the SCT end-caps, which are required to support mechanically the silicon modules, supply services to them and provide a suitable environment within the inner detector. Critical engineering choices are highlighted and innovative solutions are presented - these will be of interest to other builders of large-sca e tracking detectors. The SCT end-caps will be fully connected at the start of 2008. Further commissioning will continue, to be ready for proton-proton collision data in 2008. © 2008 IOP Publishing Ltd and SISSA.


The integration and engineering of the ATLAS SemiConductor Tracker Barrel

JOURNAL OF INSTRUMENTATION 3 (2008) ARTN P10006

A Abdesselam, PP Allport, C Anastopoulos, B Anderson, L Andricek, F Anghinolfi, R Apsimon, T Atkinson, DJ Attree, N Austin, A Bangert, G Barbier, P Barclay, AJ Barr, LE Batchelor, RL Bates, JR Batley, GA Beck, PJ Bell, WH Bell, A Belymam, J Benes, P Benes, J Bernabeu, S Bethke, JP Bizzell, J Blocki, J Bohm, CN Booth, EV Bouhova-Thacker, O Brandt, TJ Brodbeck, Z Broklova, J Broz, PAB de Renstrom, S Burdin, CM Buttar, JM Butterworth, E Capocci, C Carpentieri, AA Carter, JR Carter, A Catinaccio, JR Catmore, MC Ilatas, DG Charlton, A Cheplakov, A Chilingarov, S Chouridou, D Chren, ML Chu, V Cindro, A Ciocio, JV Civera, A Clark, AP Colijn, MJ Costa, D Costanzo, J Cox, C Dabinett, W Dabrowski, J Dalmau, KM Danielsen, S D'Auria, I Dawson, P de Jong, MD Dehchar, B Demirkoz, P Dervan, SD Cornell, SD Dixon, E Dobson, Z Dolezal, M Donega, M D'Onofrio, O Dorholt, M Doubrava, JD Dowell, Z Drasal, IP Duerdoth, R Duxfield, M Dwuznik, S Eckert, LM Eklund, R Ely, C Escobar, V Fadeyev, D Fasching, F Fawzi, L Feld, D Ferguson, P Ferrari, D Ferrere, J Fopma, P Ford, R Fortin, JM Foster, H Fox, TJ Fraser, J Freestone, RS French, J Fuster, S Gadomski, BJ Gallop, M Galuska, FC Gannaway, C Garcia, JEG Navarro, N Ghodbane, MD Gibson, SM Gibson, T Goettfert, S Gonzalez, S Gonzalez-Sevilla, MJ Goodrick, G Gorfine, A Gorisek, E Gornicki, A Greenall, D Greenfield, AA Grillo, J Grosse-Knetter, C Haber, R Haertel, K Hanagaki, T Hansl-Kozanecka, K Hara, M Harris, FG Hartjes, D Hauff, BM Hawes, T Hayler, SJ Haywood, FEW Heinemann, RCW Henderson, NP Hessey, A Hicheur, JC Hill, MC Hodgkinson, P Hodgson, TI Hollins, A Holmes, R Holt, T Holy, T Horazdovsky, S Hou, DF Howell, G Hughes, T Huse, M Ibbotson, Y Ikegami, C Issever, K Jakobs, J Jakubek, RC Jared, P Jarron, LG Johansen, P Johansson, A Jones, M Jones, RWL Jones, TJ Jones, TW Jones, D Joos, J Joseph, P Jovanovic, J Jusko, O Jusko, J Kaplon, MK Unel, V Kartvelishvili, N Kerschen, C Ketterer, AG Kholodenko, SH Kim, S Kluth, P Kodys, E Koffeman, Z Kohout, T Kohriki, T Kondo, S Koperny, V Koukol, V Kral, G Kramberger, P Kubik, N Kundu, C Lacasta, VR Lacuesta, W Lau, S-C Lee, RP Lefevre, KJC Leney, CG Lester, Z Liang, M Limper, SW Lindsay, V Linhart, AJ Lintern, GL Llacer, C Lockett, FK Loebinger, ML Fantoba, I Ludwig, J Ludwig, G Lutz, J Lynn, M Maassen, D Macina, A Macpherson, C Macwaters, CA Magrath, P Malecki, I Mandic, M Mangin-Brinet, S Marti i Garcia, GF Martinez-McKinney, T Maruyama, J Matheson, SJ McMahon, TJ McMahon, J Meinhardt, BRM Garcia, I Messmer, B Mikulec, M Mikuz, S Mima, M Minano, J Mistry, VA Mitsou, P Modesto, S Moed, B Mohn, RMM Valls, GF Moorhead, J Morin, AK Morley, M-C Morone, J Morris, MC Morrissey, HG Moser, A Moszczynski, AJM Muijs, WJ Murray, K Nagai, Y Nagai, D Naito, K Nakamura, I Nakano, C Nelson, A Nichols, R Nicholson, RB Nickerson, R Nisius, M Olcese, MO Gomez, V O'Shea, B Ottewell, O Oye, E Paganis, MJ Palmer, MA Parker, U Parzefall, S Pataraia, JR Pater, G Pellegrini, H Pernegger, E Perrin, AW Phillips, PW Phillips, K Poltorak, S Pospisil, T Pritchard, K Prokofiev, PN Ratoff, P Reznicek, VN Riadovikov, RH Richter, A Robichaud-Veronneau, D Robinson, S Roe, K Runge, HF Sadrozinski, J Sanchez, H Sandaker, J Santander, D Scheirich, J Schieck, K Sedlak, A Seiden, A Sfyrla, T Slavicek, TJ Sloan, B Smith, M Smizanska, SW Snow, M Solar, AO Solberg, B Sopko, V Sopko, LS Suay, E Spencer, H Spieler, E Stanecka, S Stapnes, J Stastny, I Stekl, M Stodulski, A Stradling, B Stugu, P Sutcliffe, RR Szczygiel, R Takashima, R Tanaka, GJ Tappern, J Tarrant, GN Taylor, PK Teng, S Terada, RJ Thompson, M Titov, DR Tovey, SN Tovey, A Tricoli, M Turala, M Tyndel, F Ukegawa, MU Comes, Y Unno, V Vacek, S Valkar, E Van der Kraaij, T Vickey, GHA Viehhauser, EG Villani, AP Vorobiev, JH Vossebeld, V Vrba, TV Anh, RS Wallny, CP Ward, R Wastie, P Webb, M Webel, M Weber, AR Weidberg, PM Weilhammer, C Weiser, PS Wells, P Werneke, MJ White, M Wiesmann, I Wilhelm, I Wilmut, JA Wilson, MW Wolter, SL Wu, HZ Zhu, A Zsenei


The ATLAS semiconductor tracker end-cap module

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 575 (2007) 353-389

A Abdesselam, PJ Adkin, PP Allport, J Alonso, L Andricek, F Anghinolfi, AA Antonov, RJ Apsimon, T Atkinson, LE Batchelor, RL Bates, G Beck, H Becker, P Bell, W Bell, P Beneš, J Bernabeu, S Bethke, JP Bizzell, J Blocki, Z Broklová, J Brož, J Bohm, P Booker, G Bright, TJ Brodbeck, P Bruckman, CM Buttar, JM Butterworth, F Campabadal, D Campbell, C Carpentieri, JL Carroll, AA Carter, JR Carter, GL Casse, P Čermák, M Chamizo, DG Charlton, A Cheplakov, E Chesi, A Chilingarov, S Chouridou, D Chren, A Christinet, ML Chu, V Cindro, A Ciocio, JV Civera, A Clark, AP Colijn, PA Cooke, MJ Costa, D Costanzo, W Dabrowski, KM Danielsen, VR Davies, I Dawson, P de Jong, P Dervan, F Doherty, Z Doležal, M Donega, M D'Onofrio, O Dorholt, Z Drásal, JD Dowell, IP Duerdoth, R Duxfield, M Dwuznik, JM Easton, S Eckert, L Eklund, C Escobar, V Fadeyev, D Fasching, L Feld, DPS Ferguson, P Ferrari, D Ferrere, C Fleta, R Fortin, JM Foster, C Fowler, H Fox, J Freestone, RS French, J Fuster, S Gadomski, BJ Gallop, C García, JE García-Navarro, S Gibson, MGD Gilchriese, F Gonzalez, S Gonzalez-Sevilla, MJ Goodrick, A Gorisek, E Gornicki, A Greenall

The challenges for the tracking detector systems at the LHC are unprecedented in terms of the number of channels, the required read-out speed and the expected radiation levels. The ATLAS Semiconductor Tracker (SCT) end-caps have a total of about 3 million electronics channels each reading out every 25 ns into its own on-chip 3.3 μ s buffer. The highest anticipated dose after 10 years operation is 1.4 × 1014 cm- 2 in units of 1 MeV neutron equivalent (assuming the damage factors scale with the non-ionising energy loss). The forward tracker has 1976 double-sided modules, mostly of area ∼ 70 cm2, each having 2 × 768 strips read out by six ASICs per side. The requirement to achieve an average perpendicular radiation length of 1.5% X0, while coping with up to 7 W dissipation per module (after irradiation), leads to stringent constraints on the thermal design. The additional requirement of 1500 e- equivalent noise charge (ENC) rising to only 1800 e- ENC after irradiation, provides stringent design constraints on both the high-density Cu/Polyimide flex read-out circuit and the ABCD3TA read-out ASICs. Finally, the accuracy of module assembly must not compromise the 16 μ m (r φ) resolution perpendicular to the strip directions or 580 μ m radial resolution coming from the 40 mrad front-back stereo angle. A total of 2210 modules were built to the tight tolerances and specifications required for the SCT. This was 234 more than the 1976 required and represents a yield of 93%. The component flow was at times tight, but the module production rate of 40-50 per week was maintained despite this. The distributed production was not found to be a major logistical problem and it allowed additional flexibility to take advantage of where the effort was available, including any spare capacity, for building the end-cap modules. The collaboration that produced the ATLAS SCT end-cap modules kept in close contact at all times so that the effects of shortages or stoppages at different sites could be rapidly resolved. © 2007 Elsevier B.V. All rights reserved.


The optical links of the ATLAS SemiConductor tracker

JOURNAL OF INSTRUMENTATION 2 (2007) ARTN P09003

JA Wilson, A Abdesselam, PP Allport, RJ Apsimon, C Band, AJ Barr, L Batchelor, R Bates, P Bell, J Bernabeu, J Bizzell, R Brenner, T Brodbeck, PB de Renstrom, C Buttar, JR Carter, DG Charlton, A Cheplakov, A Chilingarov, ML Chu, A-P Colijn, I Dawson, B Demirkoz, P De Jong, PJ Dervan, Z Dolezal, JD Dowell, C Escobar, E Spencer, T Ekelof, L Eklund, D Ferrere, TJ Fraser, M French, R French, J Fuster, BJ Gallop, C Garca, MJ Goodrick, A Greenall, AA Grillo, J Grosse-Knetter, F Hartjes, NP Hessey, JC Hill, RJ Homer, LS Hou, G Hughes, Y Ikegami, C Issever, JN Jackson, M Jones, TJ Jones, P Jovanovic, E Koffeman, P Kodys, T Kohriki, S-C Lee, CG Lester, M Limper, SW Lindsay, M Lozano, CP Macwaters, CA Magrath, G Mahout, I Mandic, J Matheson, TJ McMahon, B Mikulec, AJM Muijs, M Morrissey, A Nichols, RB Nickerson, V O'Shea, S Pagenis, MA Parker, J Pater, E Perrin, H Pernegger, SJM Peeters, PW Phillips, M Postranecky, D Robinson, A Robson, A Rudge, H Sandaker, K Sedlak, NA Smith, S Stapnes, B Stugu, PK Teng, S Terada, A Tricoli, M Tyndel, N Ujiie, M Ulln, Y Unno, E van der Kraaij, I van Vulpen, G Viehhauser, JH Vossebeld, MRM Warren, RL Wastie, AR Weidberg, PS Wells, DJ Whitet


Progress with vertex detector sensors for the International Linear Collider

NUCL INSTRUM METH A 582 (2007) 839-842

S Worm, Y Banda, C Bowdery, C Buttar, P Clarke, D Cussans, C Damerell, G Davies, E Devetak, J Fopma, B Foster, R Gao, AR Gillman, J Goldstein, T Greenshaw, M Grimes, K Harder, B Hawes, H Heath, S Hillert, B Jeffery, E Johnson, N Kundu, V Martin, P Murray, A Nichols, A Nomerotski, V O'Shea, C Parkes, C Perry, T Woolliscroft, A Sopczak, K Stefanov, S Thomas, T Tikkanen, S Yang, Z Zhang

In the past year, the Linear Collider Flavour Identification (LCFI) Collaboration has taken significant steps towards having a sensor suitable for use in the silicon vertex detector of the International Linear Collider (ILC). The goal of the collaboration is to develop the sensors, electronic systems and mechanical support structures necessary for the construction of a high performance vertex detector and to investigate the contribution such a vertex detector can make to the physics accessible at the ILC. Particular highlights include the delivery and testing of both a second-generation column parallel CCD (CP-CCD), design of the next-generation readout ASIC (CPR2a) and a dedicated ASIC for driving the CP-CCD. This paper briefly describes these and other highlights. (c) 2007 Elsevier B.V. All rights reserved.

Pages