Publications


Hole Transport in Low-Donor-Content Organic Solar Cells.

The journal of physical chemistry letters (2018) 5496-5501

D Spoltore, A Hofacker, J Benduhn, S Ullbrich, M Nyman, O Zeika, S Schellhammer, Y Fan, I Ramirez, S Barlow, M Riede, SR Marder, F Ortmann, K Vandewal

Organic solar cells with an electron donor diluted in a fullerene matrix have a reduced density of donor-fullerene contacts, resulting in decreased free-carrier recombination and increased open-circuit voltages. However, the low donor concentration prevents the formation of percolation pathways for holes. Notwithstanding, high (>75%) external quantum efficiencies can be reached, suggesting an effective hole-transport mechanism. Here, we perform a systematic study of the hole mobilities of 18 donors, diluted at ∼6 mol % in C60, with varying frontier energy level offsets and relaxation energies. We find that hole transport between isolated donor molecules occurs by long-range tunneling through several fullerene molecules, with the hole mobilities being correlated to the relaxation energy of the donor. The transport mechanism presented in this study is of general relevance to bulk heterojunction organic solar cells where mixed phases of fullerene containing a small fraction of a donor material or vice versa are present as well.


Modification of the fluorinated tin oxide/electron-transporting material interface by a strong reductant and its effect on perovskite solar cell efficiency

Molecular Systems Design and Engineering 3 (2018) 741-747

F Pulvirenti, B Wegner, NK Noel, G Mazzotta, R Hill, JB Patel, LM Herz, MB Johnston, MK Riede, HJ Snaith, N Koch, S Barlow, SR Marder

© 2018 The Royal Society of Chemistry. To date, the most efficient hybrid metal halide peroskite solar cells employ TiO2as electron-transporting material (ETM), making these devices unstable under UV light exposure. Replacing TiO2with fullerene derivatives has been shown to result in improved electronic contact and increased device lifetime, making it of interest to assess whether similar improvements can be achieved by using other organic semiconductors as ETMs. In this work, we investigate perylene-3,4:9,10-tetracarboxylic bis(benzimidazole) as a vacuum-processable ETM, and we minimize electron-collection losses at the electron-selective contact by depositing pentamethylcyclopentadienyl cyclopentadienyl rhodium dimer, (RhCp∗Cp)2, on fluorinated tin oxide. With (RhCp∗Cp)2as an interlayer, ohmic contacts can be formed, there is interfacial doping of the ETM, and stabilized power conversion efficiencies of up to 14.2% are obtained.


Engineering interactions in QDs-PCBM blends: A surface chemistry approach

Nanoscale 10 (2018) 11913-11922

M Righetto, A Privitera, F Carraro, L Bolzonello, C Ferrante, L Franco, R Bozio

© 2018 The Royal Society of Chemistry. Here we present a comprehensive study on the photophysics of QDs-fullerene blends, aiming to elucidate the impact of ligands on the extraction of carriers from QDs. We investigated how three different ligands (oleylamine, octadecanethiol and propanethiol) influence the dynamics of charge generation, separation, and recombination in blends of CdSe/CdS core/shell QDs and PCBM. We accessed each relevant process directly by combining the results from both optical and magnetic spectroscopies. Transient absorption measurements revealed a faster interaction dynamics in thiol-capped ligands. Through phenomenological modeling of the interaction processes, i.e., energy transfer and electron transfer, we estimated the suppression of exciton migration and the enhancement of electron transfer processes when alkyl-thiols are employed as ligands. Contextually, we report the profound impact of the ligands' alkyl chain length, leading to strengthened interactions with PCBM acceptors. Quantitatively, we measured a 10-fold increase in the electron transfer rate when oleylamine ligands were exchanged with propanethiol ligands. EPR spectroscopy gave access to subtle details regarding both the enhanced charge generation and lower binding energy of charge-transfer states in blends compared to PCBM alone. Moreover, through pulsed EPR techniques, we inferred the localization of deep electron traps in localized sites close to QDs in the blends. Therefore, our thorough characterization evidenced the essential role of ligands in determining QD interactions. We believe that these discoveries will contribute to the efficient incorporation of QDs in existing organic PV technologies.


Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications

Zeitschrift fur Physikalische Chemie (2018)

C Falkenberg, M Hummert, R Meerheim, C Schünemann, S Olthof, C Körner, MK Riede, K Leo

© 2018 Walter de Gruyter GmbH, Berlin/Boston 2018. The effciency of organic solar cells is not only determined by their absorber system, but also strongly dependent on the performance of numerous interlayers and charge transport layers. In order to establish new custom-made materials, the study of structure-properties relationships is of great importance. This publication examines a series of naphthalenetetracarboxylic diimide molecules (NTCDI) with varying side-chain length intended for the use as n-dopable electron transport materials in organic solar cells. While all compounds basically share very similar absorption spectra and energy level positions in the desired range, the introduction of alkyl chains has a large impact on thin film growth and charge transport properties: both crystallization and the increase of conductivity by molecular doping are suppressed. This has a direct influence on the series resistance of corresponding solar cells comprising an NTCDI derivative as electron transport material (ETM) as it lowers the power conversion efficiency to 1%. In contrast, using the side-chain free compound it is possible to achive an efficiency of 6.5%, which is higher than the efficiency of a comparable device comprising n-doped C60as standard ETM.


Erratum to: High irradiance performance of metal halide perovskites for concentrator photovoltaics (Nature Energy, (2018), 10.1038/s41560-018-0220-2)

Nature Energy (2018)

Z Wang, Q Lin, B Wenger, MG Christoforo, YH Lin, MT Klug, MB Johnston, LM Herz, HJ Snaith

© 2018, Springer Nature Limited. When this Article was originally published, an old version of the associated Supplementary Information file was uploaded. This has now been replaced.


Femtosecond Dynamics of Photoexcited C60 Films.

The journal of physical chemistry letters 9 (2018) 1885-1892

M Causa', I Ramirez, JF Martinez Hardigree, M Riede, N Banerji

The well known organic semiconductor C60 is attracting renewed attention due to its centimeter-long electron diffusion length and high performance of solar cells containing 95% fullerene, yet its photophysical properties remain poorly understood. We elucidate the dynamics of Frenkel and intermolecular (inter-C60) charge-transfer (CT) excitons in neat and diluted C60 films from high-quality femtosecond transient absorption (TA) measurements performed at low fluences and free from oxygen or pump-induced photodimerization. We find from preferential excitation of either species that the CT excitons give rise to a strong electro-absorption (EA) signal but are extremely short-lived. The Frenkel exciton relaxation and triplet yield strongly depend on the C60 aggregation. Finally, TA measurements on full devices with applied electric field allow us to optically monitor the dissociation of CT excitons into free charges for the first time and to demonstrate the influence of cluster size on the spectral signature of the C60 anion.


Key Tradeoffs Limiting the Performance of Organic Photovoltaics

Advanced Energy Materials (2018)

I Ramirez, M Causa', Y Zhong, N Banerji, M Riede

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 saw the publication of several new material systems that challenge the long-held notion that a driving force is necessary for efficient exciton dissociation in organic photovoltaics (OPVs) and that a loss of ≈0.6 eV between the energy of the charge transfer state E ct and the energy corresponding to open circuit is general. In light of these developments, the authors combine insights from device physics and spectroscopy to review the two key tradeoffs limiting OPV performances. These are the tradeoff between the charge carrier generation efficiency and the achievable open circuit voltage (V oc ) and the tradeoff between device thickness (light absorption) and fill factor. The emergence of several competitive nonfullerene acceptors (NFAs) is exciting for both of these. The authors analyze what makes these materials compare favorably to fullerenes, including the potential role of molecular vibrations, and discuss both design criteria for new molecules and the achievable power conversion efficiencies.


High irradiance performance of metal halide perovskites for concentrator photovoltaics

Nature Energy (2018)

Z Wang, Q Lin, B Wenger, MG Christoforo, YH Lin, MT Klug, MB Johnston, LM Herz, HJ Snaith

© 2018, The Author(s). Traditionally, III–V multi-junction cells have been used in concentrator photovoltaic (CPV) applications, which deliver extremely high efficiencies but have failed to compete with ‘flat-plate’ silicon technologies owing to cost. Here, we assess the feasibility of using metal halide perovskites for CPVs, and we evaluate their device performance and stability under concentrated light. Under simulated sunlight, we achieve a peak efficiency of 23.6% under 14 Suns (that is, 14 times the standard solar irradiance), as compared to 21.1% under 1 Sun, and measure 1.26 V open-circuit voltage under 53 Suns, for a material with a bandgap of 1.63 eV. Importantly, our encapsulated devices maintain over 90% of their original efficiency after 150 h aging under 10 Suns at maximum power point. Our work reveals the potential of perovskite CPVs, and may lead to new PV deployment strategies combining perovskites with low-concentration factor and lower-accuracy solar tracking systems.


Exciton Diffusion Length and Charge Extraction Yield in Organic Bilayer Solar Cells.

Advanced materials (Deerfield Beach, Fla.) 29 (2017)

B Siegmund, MT Sajjad, J Widmer, D Ray, C Koerner, M Riede, K Leo, IDW Samuel, K Vandewal

A method for resolving the diffusion length of excitons and the extraction yield of charge carriers is presented based on the performance of organic bilayer solar cells and careful modeling. The technique uses a simultaneous variation of the absorber thickness and the excitation wavelength. Rigorously differing solar cell structures as well as independent photoluminescence quenching measurements give consistent results.


Optical Excitation Dynamics at Hetero-Interfaces Fullerene/Quantum Dots

ORGANIC, HYBRID, AND PEROVSKITE PHOTOVOLTAICS XVIII 10363 (2017)

M Righetto, A Privitera, L Franco, R Bozio


Spectroscopic Insights into Carbon Dot Systems.

The journal of physical chemistry letters 8 (2017) 2236-2242

M Righetto, A Privitera, I Fortunati, D Mosconi, M Zerbetto, ML Curri, M Corricelli, A Moretto, S Agnoli, L Franco, R Bozio, C Ferrante

The controversial nature of the fluorescent properties of carbon dots (CDs), ascribed either to surface states or to small molecules adsorbed onto the carbon nanostructures, is an unresolved issue. To date, an accurate picture of CDs and an exhaustive structure-property correlation are still lacking. Using two unconventional spectroscopic techniques, fluorescence correlation spectroscopy (FCS) and time-resolved electron paramagnetic resonance (TREPR), we contribute to fill this gap. Although electron micrographs indicate the presence of carbon cores, FCS reveals that the emission properties of CDs are based neither on those cores nor on molecular species linked to them, but rather on free molecules. TREPR provides deeper insights into the structure of carbon cores, where C sp2 domains are embedded within C sp3 scaffolds. FCS and TREPR prove to be powerful techniques, characterizing CDs as inherently heterogeneous systems, providing insights into the nature of such systems and paving the way to standardization of these nanomaterials.


MICROSTRUCTURAL CHARACTERIZATION FOR EMERGING PHOTOVOLTAIC MATERIALS Introduction

in , 32 (2017) 1797-1797

D Delongchamp, C Nicklin, M Riede


MINERVA: A facility to study Microstructure and INterface Evolution in Realtime under VAcuum.

The Review of scientific instruments 88 (2017) 103901-

C Nicklin, J Martinez-Hardigree, A Warne, S Green, M Burt, J Naylor, A Dorman, D Wicks, S Din, M Riede

A sample environment to enable real-time X-ray scattering measurements to be recorded during the growth of materials by thermal evaporation in vacuum is presented. The in situ capabilities include studying microstructure development with time or during exposure to different environmental conditions, such as temperature and gas pressure. The chamber provides internal slits and a beam stop, to reduce the background scattering from the X-rays passing through the entrance and exit windows, together with highly controllable flux rates of the evaporants. Initial experiments demonstrate some of the possibilities by monitoring the growth of bathophenanthroline (BPhen), a common molecule used in organic solar cells and organic light emitting diodes, including the development of the microstructure with time and depth within the film. The results show how BPhen nanocrystal structures coarsen at room temperature under vacuum, highlighting the importance of using real time measurements to understand the as-deposited pristine film structure and its development with time. More generally, this sample environment is versatile and can be used for investigation of structure-property relationships in a wide range of vacuum deposited materials and their applications in, for example, optoelectronic devices and energy storage.


The central role of ligands in electron transfer from perovskite nanocrystals

MRS Advances 2 (2017) 2327-2335

A Privitera, M Righetto, R Bozio, L Franco

© 2017 Materials Research Society. The nanoscale miniaturization of hybrid organic-inorganic perovskite has given rise to new functionalities, but the full understanding of the multifaceted properties of perovskite nanostructures is still incomplete. Using a combination of optical and magnetic resonance (EPR) spectroscopies, we focused our investigation on the photoinduced electron transfer process taking place in perovskite nanocrystals blended with the fullerene derivative PCBM. In particular we analyzed the different effect of two types of nanocrystal ligands, namely octylamine and oleylamine, on the photoinduced processes. The electron transfer process resulted in efficient fluorescence quenching in a mixed solution and in the formation of charges (PCBM anions) detected by EPR in the blends. Both the optical and EPR techniques revealed a stronger effect when the shorter ligand is present. Finally, pulsed EPR demonstrated the stabilization of the photogenerated charges in proximity of perovskite nanocrystals.


The Potential of Multijunction Perovskite Solar Cells

ACS ENERGY LETTERS 2 (2017) 2506-2513

MT Horantner, T Leijtens, ME Ziffer, GE Eperon, MG Christoforo, MD McGehee, HJ Snaith


Intrinsic non-radiative voltage losses in fullerene-based organic solar cells

NATURE ENERGY 2 (2017) ARTN 17053

J Benduhn, K Tvingstedt, F Piersimoni, S Ullbrich, Y Fan, M Tropiano, KA McGarry, O Zeika, MK Riede, CJ Douglas, S Barlow, SR Marder, D Neher, D Spoltore, K Vandewal


Dicyanovinylene-Substituted Oligothiophenes for Organic Solar Cells

in , 272 (2017) 51-75

C Koerner, H Ziehlke, R Fitzner, M Riede, A Mishra, P Baeuerle, K Leo


In-situ observation of stacking fault evolution in vacuum-deposited C-60

APPLIED PHYSICS LETTERS 111 (2017) ARTN 233305

JFM Hardigree, IR Ramirez, G Mazzotta, C Nicklin, M Riede


Hybrid Organic/Inorganic Perovskite-Polymer Nanocomposites: Toward the Enhancement of Structural and Electrical Properties.

The journal of physical chemistry letters 8 (2017) 5981-5986

A Privitera, M Righetto, M De Bastiani, F Carraro, M Rancan, L Armelao, G Granozzi, R Bozio, L Franco

Hybrid organic/inorganic perovskite nanoparticles (NPs) have garnered remarkable research attention because of their promising photophysical properties. New and interesting properties emerge after combining perovskite NPs with semiconducting materials. Here, we report the synthesis and investigation of a composite material obtained by mixing CH3NH3PbBr3 nanocrystals with the semiconducting polymer poly(3-hexylthiophene) (P3HT). By the combination of structural techniques and optical and magnetic spectroscopies we observed multiple effects of the perovskite NPs on the P3HT: (i) an enlargement of P3HT crystalline domains, (ii) a strong p-doping of the P3HT, and (iii) an enhancement of interchain order typical of H-aggregates. These observations open a new avenue toward innovative perovskite NP-based applications.


Tuning Biocompatible Block Copolymer Micelles by Varying Solvent Composition: Core/Corona Structure and Solvent Uptake

Macromolecules 50 (2017) 4322-4334

TJ Cooksey, A Singh, KM Le, S Wang, EG Kelley, L He, S Vajjala Kesava, ED Gomez, BE Kidd, LA Madsen, ML Robertson

© 2017 American Chemical Society. Block copolymer micelles enable the formation of widely tunable self-assembled structures in liquid phases, with applications ranging from drug delivery to personal care products to nanoreactors. In order to understand fundamental aspects of micelle assembly and dynamics, the structural properties and solvent uptake of biocompatible poly(ethylene oxide-b-ϵ-caprolactone) (PEO-PCL) diblock copolymers in deuterated water (D 2 O)/tetrahydrofuran (THF-d 8 ) mixtures were investigated with a combination of small-angle neutron scattering, nuclear magnetic resonance, and transmission electron microscopy. PEO-PCL block copolymers, of varying molecular weight yet constant block ratio, formed spherical micelles through a wide range of solvent compositions. Varying the solvent composition from 10 to 60 vol % THF-d 8 in D 2 O/THF-d 8 mixtures was a convenient means of varying the core-corona interfacial tension in the micelle system. An increase in THF-d 8 content in the bulk solvent increased the solvent uptake within the micelle core, which was comparable for the two series, irrespective of the polymer molecular weight. Whereas the smaller molecular weight micelle series exhibited a decrease in aggregation number with increasing THF-d 8 content in the bulk solvent, as anticipated due to changes in the core-corona interfacial tension, the aggregation number of the larger molecular weight series was surprisingly invariant with bulk solvent composition. Differences in the dependencies of the micelle size parameters (core radius and overall micelle radius) on the solvent composition originated from the differing trends in aggregation number for the two micelle series. Incorporation of the known unimer content determined from NMR (described in the companion paper), and directly accounting for impacts of solvent swelling of the micelle core on the neutron scattering length density of the core, allowed refinement of and increased confidence in extracted micelle parameters. In summary, the two micelle series showed similar solvent uptake that was independent of the polymer molecular weight yet significantly different dependencies of their aggregation number and size parameters on the solvent composition.

Pages