Publications by Dimitra Rigopoulou


The JCMT Nearby Galaxies Legacy Survey - VIII. CO data and the L CO(3-2)-L FIR correlation in the SINGS sample

Monthly Notices of the Royal Astronomical Society (2012)

CD Wilson, BE Warren, FP Israel, S Serjeant, D Attewell, GJ Bendo, HM Butner, P Chanial, DL Clements, J Golding, V Heesen, J Irwin, J Leech, HE Matthews, S Mühle, AMJ Mortier, G Petitpas, JR Sánchez-Gallego, E Sinukoff, K Shorten, BK Tan, RPJ Tilanus, A Usero, M Vaccari, T Wiegert, M Zhu, DM Alexander, P Alexander, M Azimlu, P Barmby, R Brar, C Bridge, E Brinks, S Brooks, K Coppin, S Côté, P Côté, S Courteau, J Davies, S Eales, M Fich, M Hudson, DH Hughes, RJ Ivison, JH Knapen, M Page, TJ Parkin, D Rigopoulou, E Rosolowsky, ER Seaquist, K Spekkens, N Tanvir, JM van der Hulst, P van der Werf, C Vlahakis, TM Webb, B Weferling, GJ White


Ultra Steep Spectrum Radio Sources in the Lockman Hole: SERVS Identifications and Redshift Distribution at the Faintest Radio Fluxes

SQUARE KILOMETRE ARRAY: PAVING THE WAY FOR THE NEW 21ST CENTURY RADIO ASTRONOMY PARADIGM (2012) 97-100

J Afonso, L Bizzocchi, E Ibar, M Grossi, C Simpson, S Chapman, MJ Jarvis, H Rottgering, RP Norris, J Dunlop, RJ Ivison, H Messias, J Pforr, M Vaccari, N Seymour, P Best, E Gonzalez-Solares, D Farrah, CAC Fernandes, J-S Huang, M Lacy, C Marastron, L Marchetti, J-C Mauduit, S Oliver, D Rigopoulou, SA Stanford, J Surace, G Zeimann


LOCAL LUMINOUS INFRARED GALAXIES. II. ACTIVE GALACTIC NUCLEUS ACTIVITY FROM SPITZER/INFRARED SPECTROGRAPH SPECTRA

ASTROPHYSICAL JOURNAL 744 (2012) ARTN 2

A Alonso-Herrero, M Pereira-Santaella, GH Rieke, D Rigopoulou


Physical conditions of the interstellar medium of high-redshift, strongly lensed submillimetre galaxies from theHerschel-ATLAS

Monthly Notices of the Royal Astronomical Society (2011)

I Valtchanov, J Virdee, RJ Ivison, B Swinyard, P van der Werf, D Rigopoulou, E da Cunha, R Lupu, DJ Benford, D Riechers, I Smail, M Jarvis, C Pearson, H Gomez, R Hopwood, B Altieri, M Birkinshaw, D Coia, L Conversi, A Cooray, G De Zotti, L Dunne, D Frayer, L Leeuw, A Marston, M Negrello, MS Portal, D Scott, MA Thompson, M Vaccari, M Baes, D Clements, MJ Michałowski, H Dannerbauer, S Serjeant, R Auld, S Buttiglione, A Cava, A Dariush, S Dye, S Eales, J Fritz, E Ibar, S Maddox, E Pascale, M Pohlen, E Rigby, G Rodighiero, DJB Smith, P Temi, J Carpenter, A Bolatto, M Gurwell


ULTRA STEEP SPECTRUM RADIO SOURCES IN THE LOCKMAN HOLE: SERVS IDENTIFICATIONS AND REDSHIFT DISTRIBUTION AT THE FAINTEST RADIO FLUXES

ASTROPHYSICAL JOURNAL 743 (2011) ARTN 122

J Afonso, L Bizzocchi, E Ibar, M Grossi, C Simpson, S Chapman, MJ Jarvis, H Rottgering, RP Norris, J Dunlop, RJ Ivison, H Messias, J Pforr, M Vaccari, N Seymour, P Best, E Gonzalez-Solares, D Farrah, CAC Fernandes, J-S Huang, M Lacy, C Maraston, L Marchetti, J-C Mauduit, S Oliver, D Rigopoulou, SA Stanford, J Surace, G Zeimann


Goods-Herschel: Gas-to-dust mass ratios and CO-TO-H<inf>2</inf> conversion factors in normal and starbursting galaxies at high-z

Astrophysical Journal Letters 740 (2011)

GE Magdis, E Daddi, D Elbaz, M Sargent, M Dickinson, H Dannerbauer, H Aussel, F Walter, HS Hwang, V Charmandaris, J Hodge, D Riechers, D Rigopoulou, C Carilli, M Pannella, J Mullaney, R Leiton, D Scott

We explore the gas-to-dust mass ratio (M gas/M d) and the CO luminosity-to-M gas conversion factor (αCO) of two well-studied galaxies in the Great Observatories Origins Deep Survey North field that are expected to have different star-forming modes, the starburst GN20 at z = 4.05 and the normal star-forming galaxy BzK-21000 at z = 1.52. Detailed sampling is available for their Rayleigh-Jeans emission via ground-based millimeter (mm) interferometry (1.1-6.6mm) along with Herschel PACS and SPIRE data that probe the peak of their infrared emission. Using the physically motivated Draine & Li models, as well as a modified blackbody function, we measure the dust mass (M dust) of the sources and find (2.0+0.7-0.6 × 109) M ∞ for GN20 and (8.6+0.6-0.9 × 108) M ∞ for BzK-21000. The addition of mm data reduces the uncertainties of the derived M dust by a factor of ∼2, allowing the use of the local M gas/M d versus metallicity relation to place constraints on the αCO values of the two sources. For GN20 we derive a conversion factor of αCO < 1.0 M ∞ pc-2(Kkms-1)-1, consistent with that of local ultra-luminous infrared galaxies, while for BzK-21000 we find a considerably higher value, αCO ∼4.0 M ∞ pc-2(Kkms-1)-1, in agreement with an independent kinematic derivation reported previously. The implied star formation efficiency is ∼25 L ∞/M ∞ for BzK-21000, a factor of ∼5-10 lower than that of GN20. The findings for these two sources support the existence of different disk-like and starburst star formation modes in distant galaxies, although a larger sample is required to draw statistically robust results. © 2011. The American Astronomical Society. All rights reserved.


Spectral Energy Distribution of Far-infrared Bright Quasar Sample in the Lockman Hole

GALAXY EVOLUTION: INFRARED TO MILLIMETER WAVELENGTH PERSPECTIVE 446 (2011) 241-+

Y Dai, J-S Huang, A Omont, E Hatziminaoglou, C Willmer, G Fazio, M Elvis, J Bergeron, D Rigopoulou, I Perez-Fournon


Physical conditions of the interstellar medium of high-redshift, strongly lensed submillimetre galaxies from the Herschel-ATLAS

Monthly Notices of the Royal Astronomical Society 415 (2011) 3473-3484

I Valtchanov, J Virdee, RJ Ivison, B Swinyard, P van der Werf, D Rigopoulou, E da Cunha, R Lupu, DJ Benford, D Riechers, I Smail, M Jarvis, C Pearson, H Gomez, R Hopwood, B Altieri, M Birkinshaw, D Coia, L Conversi, A Cooray, G de Zotti, L Dunne, D Frayer, L Leeuw, A Marston, M Negrello, MS Portal, D Scott, MA Thompson, M Vaccari, M Baes, D Clements, MJ Michalowski, H Dannerbauer, S Serjeant, R Auld, S Buttiglione, A Cava, A Dariush, S Dye, S Eales, J Fritz, E Ibar, S Maddox, E Pascale, M Pohlen, E Rigby, G Rodighiero, DJB Smith, P Temi, J Carpenter, A Bolatto, M Gurwell, JD Vieira

We present Herschel-Spectral and Photometric Imaging Receiver (SPIRE) Fourier transform spectrometer (FTS) and radio follow-up observations of two Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS)-detected strongly lensed distant galaxies. In one of the targeted galaxies H-ATLAS J090311.6+003906 (SDP.81), we detect [Oiii]88μm and [Cii]158μm lines at a signal-to-noise ratio of ~5. We do not have any positive line identification in the other fainter target H-ATLAS J091305.0-005343 (SDP.130). Currently, SDP.81 is the faintest submillimetre galaxy with positive line detections with the FTS, with continuum flux just below 200mJy in the 200-600μm wavelength range. The derived redshift of SDP.81 from the two detections isz= 3.043 ± 0.012, in agreement with ground-based CO measurements. This is the first detection byHerschelof the [Oiii]88μm line in a galaxy at redshift higher than 0.05. Comparing the observed lines and line ratios with a grid of photodissociation region (PDR) models with different physical conditions, we derive the PDR cloud densityn≈ 2000cm-3 and the far-ultraviolet ionizing radiation fieldG0≈ 200 (in units of the Habing field - the local Galactic interstellar radiation field of 1.6 × 10-6 W m-2). Using the CO-derived molecular mass and the PDR properties, we estimate the effective radius of the emitting region to be 500-700pc. These characteristics are typical for star-forming, high-redshift galaxies. The radio observations indicate that SDP.81 deviates significantly from the local far-infrared/radio (FIR/radio) correlation, which hints that some fraction of the radio emission is coming from an active galactic nucleus (AGN). The constraints on the source size from millimetre-wave observations put a very conservative upper limit of the possible AGN contribution to less than 33 per cent. These indications, together with the high [Oiii]/FIR ratio and the upper limit of [Oi]63μm/[Cii]158μm, suggest that some fraction of the ionizing radiation is likely to originate from the AGN. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.


GOODS-Herschel: a population of 24 mu m dropout sources at z < 2

ASTRONOMY & ASTROPHYSICS 534 (2011) ARTN A15

GE Magdis, D Elbaz, M Dickinson, HS Hwang, V Charmandaris, L Armus, E Daddi, E Le Floc'h, H Aussel, H Dannerbauer, D Rigopoulou, V Buat, G Morrison, J Mullaney, D Lutz, D Scott, D Coia, A Pope, M Pannella, B Altieri, D Burgarella, M Bethermin, K Dasyra, J Kartaltepe, R Leiton, B Magnelli, P Popesso, I Valtchanov


Four IRAC sources with an extremely red H - [3.6] color: Passive or dusty galaxies at z &gt; 4.5?

Astrophysical Journal Letters 742 (2011)

JS Huang, XZ Zheng, D Rigopoulou, G Magdis, GG Fazio, T Wang

We report the detection of four IRAC sources in the GOODS-South field with an extremely red color of H - [3.6] > 4.5. The four sources are not detected in the deep Hubble Space Telescope WFC3 H-band image with H limit = 28.3mag. We find that only three types of SED templates can produce such a red H - [3.6] color: a very dusty SED with the Calzetti extinction of AV = 16mag at z = 0.8; a very dusty SED with the SMC extinction of AV = 8mag at z = 2.0- 2.2; and an 1Gyr SSP with AV ∼0.8 at z = 5.7. We argue that these sources are unlikely dusty galaxies at z ≤ 2.2 based on absent strong MIPS 24 μm emission. The old stellar population model at z > 4.5 remains a possible solution for the 4 sources. At z > 4.5, these sources have stellar masses of log(M */M ⊙) = 10.6-11.2. One source, ERS-1, is also a type-II X-ray QSO with L 2 - 8 keV = 1.6 × 1044 erg s-1. One of the four sources is an X-ray QSO and another one is a HyperLIRG, suggesting a galaxy-merging scenario for the formation of these massive galaxies at high redshifts. © 2011. The American Astronomical Society. All rights reserved.


GOODS-Herschel: A population of 24 μ m dropout sources at z &lt; 2

Astronomy and Astrophysics 534 (2011)

GE Magdis, D Elbaz, M Dickinson, HS Hwang, V Charmandaris, L Armus, E Daddi, E Le Floc'H, H Aussel, H Dannerbauer, D Rigopoulou, V Buat, G Morrison, J Mullaney, D Lutz, D Scott, D Coia, A Pope, M Pannella, B Altieri, D Burgarella, M Bethermin, K Dasyra, J Kartaltepe, R Leiton, B Magnelli, P Popesso, I Valtchanov

Using extremely deep PACS 100-and 160 μm Herschel data from the GOODS-Herschel program, we identify 21 infrared bright galaxies previously missed in the deepest 24 μm surveys performed by Spitzer/MIPS. These MIPS dropouts are predominantly found in two redshift bins, centred at z ∼ 0.4 and ∼1.3. Their S100/S24 flux density ratios are similar to those of local (ultra-) luminous infrared galaxies (LIRGs and ULIRGs), whose silicate absorption features at 18 μm (at z ∼ 0.4) and 9.7 μm (at z ∼ 1.3) are shifted into the 24 μm MIPS band at these redshifts. The high-z sub-sample consists of 11 infrared luminous sources, accounting for ∼2% of the whole GOODS-Herschel sample and putting strong upper limits on the fraction of LIRGs/ULIRGs at 1.0 < z < 1.7 that are missed by the 24 μm surveys. We find that a S100/S24 > 43 colour cut selects galaxies with a redshift distribution similar to that of the MIPS dropouts and when combined with a second colour cut, S 16/S8 > 4, isolates sources at 1.0 < z < 1.7. We show that these sources have elevated specific star formation rates (sSFR) compared to main sequence galaxies at these redshifts and are likely to be compact starbursts with moderate/strong 9.7 μm silicate absorption features in their mid-IR spectra. Herschel data reveal that their infrared luminosities extrapolated from the 24 μm flux density are underestimated, on average, by a factor of ∼3. These silicate break galaxies account for 16% (8%) of the ULIRG (LIRG) population in the GOODS fields, indicating a lower limit in their space density of 2.0 × 10-5 Mpc-3. Finally, we provide estimates of the fraction of z < 2 MIPS dropout sources as a function of the 24-, 100-, 160-, 250-and 350 μm sensitivity limits, and conclude that previous predictions of a population of silicate break galaxies missed by the major 24 μm extragalactic surveys have beenoverestimated. © 2011 ESO.


HerMES: Lyman break galaxies individually detected at 0.7 ≤ z ≤ 2.0 in goods-N with herschel/spire

Astrophysical Journal Letters 734 (2011)

D Burgarella, S Heinis, G Magdis, R Auld, A Blain, J Bock, D Brisbin, V Buat, P Chanial, DL Clements, A Cooray, S Eales, A Franceschini, E Giovannoli, J Glenn, EA Gonzlez Solares, M Griffin, HS Hwang, O Ilbert, L Marchetti, AMJ Mortier, SJ Oliver, MJ Page, A Papageorgiou, CP Pearson, I Pérez-Fournon, M Pohlen, JI Rawlings, G Raymond, D Rigopoulou, G Rodighiero, IG Roseboom, M Rowan-Robinson, D Scott, N Seymour, AJ Smith, M Symeonidis, KE Tugwell, M Vaccari, JD Vieira, M Viero, L Vigroux, L Wang, G Wright

As part of the Herschel Multi-tiered Extragalactic Survey we have investigated the rest-frame far-infrared (FIR) properties of a sample of more than 4800 Lyman break galaxies (LBGs) in the Great Observatories Origins Deep Survey North field. Most LBGs are not detected individually, but we do detect a sub-sample of 12 objects at 0.7 < z < 1.6 and one object at z = 2.0. The ones detected by Herschel SPIRE have redder observed NUV - U and U - R colors than the others, while the undetected ones have colors consistent with average LBGs at z > 2.5. The UV-to-FIR spectral energy distributions of the objects detected in the rest-frame FIR are investigated using the code CIGALE to estimate physical parameters. We find that LBGs detected by SPIRE are high-mass, luminous infrared galaxies. It appears that LBGs are located in a triangle-shaped region in the A FUV versus log L FUV = 0 diagram limited by A FUV = 0 at the bottom and by a diagonal following the temporal evolution of the most massive galaxies from the bottom right to the top left of the diagram. This upper envelop can be used as upper limits for the UV dust attenuation as a function of L FUV. The limits of this region are well explained using a closed-box model, where the chemical evolution of galaxies produces metals, which in turn lead to higher dust attenuation when the galaxies age. © 2011. The American Astronomical Society. All rights reserved.


The detection of a population of submillimeter-bright, strongly lensed galaxies.

Science 330 (2010) 800-804

M Negrello, R Hopwood, G De Zotti, A Cooray, A Verma, J Bock, DT Frayer, MA Gurwell, A Omont, R Neri, H Dannerbauer, LL Leeuw, E Barton, J Cooke, S Kim, E da Cunha, G Rodighiero, P Cox, DG Bonfield, MJ Jarvis, S Serjeant, RJ Ivison, S Dye, I Aretxaga, DH Hughes, E Ibar, F Bertoldi, I Valtchanov, S Eales, L Dunne, SP Driver, R Auld, S Buttiglione, A Cava, CA Grady, DL Clements, A Dariush, J Fritz, D Hill, JB Hornbeck, L Kelvin, G Lagache, M Lopez-Caniego, J Gonzalez-Nuevo, S Maddox, E Pascale, M Pohlen, EE Rigby, A Robotham, C Simpson, DJB Smith, P Temi, MA Thompson, BE Woodgate, DG York, JE Aguirre, A Beelen, A Blain, AJ Baker, M Birkinshaw, R Blundell, CM Bradford, D Burgarella, L Danese, JS Dunlop, S Fleuren, J Glenn, AI Harris, J Kamenetzky, RE Lupu, RJ Maddalena, BF Madore, PR Maloney, H Matsuhara, MJ Michaowski, EJ Murphy, BJ Naylor, H Nguyen, C Popescu, S Rawlings, D Rigopoulou, D Scott, KS Scott, M Seibert, I Smail, RJ Tuffs, JD Vieira, PP van der Werf, J Zmuidzinas

Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.


The far-infrared/radio correlation as probed by Herschel

Astronomy and Astrophysics 518 (2010)

RJ Ivison, B Magnelli, E Ibar, P Andreani, D Elbaz, B Altieri, A Amblard, V Arumugam, R Auld, H Aussel, T Babbedge, S Berta, A Blain, J Bock, A Bongiovanni, A Boselli, V Buat, D Burgarella, N Castro-Rodríguez, A Cava, J Cepa, P Chanial, A Cimatti, M Cirasuolo, DL Clements, A Conley, L Conversi, A Cooray, E Daddi, H Dominguez, CD Dowell, E Dwek, S Eales, D Farrah, N FörsterSchreiber, M Fox, A Franceschini, W Gear, R Genzel, J Glenn, M Griffin, C Gruppioni, M Halpern, E Hatziminaoglou, K Isaak, G Lagache, L Levenson, N Lu, D Lutz, S Madden, B Maffei, G Magdis, G Mainetti, R Maiolino, L Marchetti, GE Morrison, AMJ Mortier, HT Nguyen, R Nordon, B O'Halloran, SJ Oliver, A Omont, FN Owen, MJ Page, P Panuzzo, A Papageorgiou, CP Pearson, I Pérez-Fournon, AMP García, A Poglitsch, M Pohlen, P Popesso, F Pozzi, JI Rawlings, G Raymond, D Rigopoulou, L Riguccini, D Rizzo, G Rodighiero, IG Roseboom, M Rowan-Robinson, A Saintonge, M SanchezPorta, P Santini, B Schulz, D Scott, N Seymour, L Shao, DL Shupe, AJ Smith, JA Stevens, E Sturm, M Symeonidis, L Tacconi, M Trichas, KE Tugwell, M Vaccari, I Valtchanov, J Vieira, L Vigroux

We set out to determine the ratio, qIR, of rest-frame 8-1000-μm flux, SIR, to monochromatic radio flux, S 1.4 GHz, for galaxies selected at far-infrared (IR) and radio wavelengths, to search for signs that the ratio evolves with redshift, luminosity or dust temperature, Td, and to identify any far-IR-bright outliers - useful laboratories for exploring why the far-IR/radio correlation (FIRRC) is generally so tight when the prevailing theory suggests variations are almost inevitable. We use flux-limited 250-μm and 1.4-GHz samples, obtained using Herschel and the Very Large Array (VLA) in GOODS-North (-N). We determine bolometric IR output using ten bands spanning λobs = 24-1250 μm, exploiting data from PACS and SPIRE (PEP; HerMES), as well as Spitzer, SCUBA, AzTEC and MAMBO. We also explore the properties of an L IR-matched sample, designed to reveal evolution of qIR with redshift, spanning log LIR = 11-12 L⊙ and z = 0-2, by stacking into the radio and far-IR images. For 1.4-GHz-selected galaxies in GOODS-N, we see tentative evidence of a break in the flux ratio, q IR, at L1.4 GHz ∼ 1022.7 W Hz-1, where active galactic nuclei (AGN) are starting to dominate the radio power density, and of weaker correlations with redshift and Td. From our 250-μm-selected sample we identify a small number of far-IR-bright outliers, and see trends of qIR with L1.4 GHz, LIR, Td and redshift, noting that some of these are inter-related. For our LIR-matched sample, there is no evidence that qIR changes significantly as we move back into the epoch of galaxy formation: we find qIR (1+z)γ, where γ = -0.04±0.03 at z = 0-2; however, discounting the least reliable data at z < 0.5 we find γ = -0.26±0.07, modest evolution which may be related to the radio background seen by ARCADE 2, perhaps driven by <10-μJy radio activity amongst ordinary star-forming galaxies at z>1. © ESO 2010.


Herschel reveals a T-dust-unbiased selection of z similar to 2 ultraluminous infrared galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 409 (2010) 22-28

GE Magdis, D Elbaz, HS Hwang, A Amblard, V Arumugam, H Aussel, A Blain, J Bock, A Boselli, V Buat, N Castro-Rodriguez, A Cava, P Chanial, DL Clements, A Conley, L Conversi, A Cooray, CD Dowell, E Dwek, S Eales, D Farrah, A Franceschini, J Glenn, M Griffin, M Halpern, E Hatziminaoglou, J Huang, E Ibar, K Isaak, E Le Floc'h, G Lagache, L Levenson, CJ Lonsdale, N Lu, S Madden, B Maffei, G Mainetti, L Marchetti, GE Morrison, HT Nguyen, B O'Halloran, SJ Oliver, A Omont, FN Owen, MJ Page, M Pannella, P Panuzzo, A Papageorgiou, CP Pearson, I Perez-Fournon, M Pohlen, D Rigopoulou, D Rizzo, IG Roseboom, M Rowan-Robinson, B Schulz, D Scott, N Seymour, DL Shupe, AJ Smith, JA Stevens, V Strazzullo, M Symeonidis, M Trichas, KE Tugwell, M Vaccari, I Valtchanov, L Vigroux, L Wang, G Wright, CK Xu, M Zemcov


Herschel-ATLAS: Far-infrared properties of radio-selected galaxies

Monthly Notices of the Royal Astronomical Society 409 (2010) 122-131

MJ Hardcastle, JS Virdee, MJ Jarvis, DG Bonfield, L Dunne, S Rawlings, JA Stevens, NM Christopher, I Heywood, T Mauch, D Rigopoulou, A Verma, IK Baldry, SP Bamford, S Buttiglione, A Cava, DL Clements, A Cooray, SM Croom, A Dariush, G De Zotti, S Eales, J Fritz, DT Hill, D Hughes, R Hopwood, E Ibar, RJ Ivison, DH Jones, J Loveday, SJ Maddox, MJ Michałowski, M Negrello, P Norberg, M Pohlen, M Prescott, EE Rigby, ASG Robotham, G Rodighiero, D Scott, R Sharp, DJB Smith, P Temi, E Van Kampen

We use the Herschel-Astrophysical Terahertz Large Area Survey (ATLAS) science demonstration data to investigate the star formation properties of radio-selected galaxies in the GAMA-9h field as a function of radio luminosity and redshift. Radio selection at the lowest radio luminosities, as expected, selects mostly starburst galaxies. At higher radio luminosities, where the population is dominated by active galactic nuclei (AGN), we find that some individual objects are associated with high far-infrared luminosities. However, the far-infrared properties of the radio-loud population are statistically indistinguishable from those of a comparison population of radio-quiet galaxies matched in redshift and K-band absolute magnitude. There is thus no evidence that the host galaxies of these largely low-luminosity (Fanaroff-Riley class I), and presumably low-excitation, AGN, as a population, have particularly unusual star formation histories. Models in which the AGN activity in higher luminosity, high-excitation radio galaxies is triggered by major mergers would predict a luminosity-dependent effect that is not seen in our data (which only span a limited range in radio luminosity) but which may well be detectable with the full Herschel-ATLAS data set. © 2010 The Authors. Journal compilation © 2010 RAS.


HARMONI: A single-field wide-band integral-field spectrograph for the European ELT

Proceedings of SPIE - The International Society for Optical Engineering 7735 (2010)

N Thatte, M Tecza, F Clarke, RL Davies, A Remillieux, R Bacon, D Lunney, S Arribas, E Mediavilla, F Gago, N Bezawada, P Ferruit, A Fragoso, D Freeman, J Fuentes, T Fusco, A Gallie, A Garcia, T Goodsall, F Gracia, A Jarno, J Kosmalski, J Lynn, S McLay, D Montgomery, A Pecontal, H Schnetler, H Smith, D Sosa, G Battaglia, N Bowles, L Colina, E Emsellem, A Garcia-Perez, S Gladysz, I Hook, P Irwin, M Jarvis, R Kennicutt, A Levan, A Longmore, J Magorrian, M McCaughrean, L Origlia, R Rebolo, D Rigopoulou, S Ryan, M Swinbank, N Tanvir, E Tolstoy, A Verma

We describe the results of a Phase A study for a single field, wide band, near-infrared integral field spectrograph for the European Extremely Large Telescope (E-ELT). HARMONI, the High Angular Resolution Monolithic Optical & Nearinfrared Integral field spectrograph, provides the E-ELT's core spectroscopic requirement. It is a work-horse instrument, with four different spatial scales, ranging from seeing to diffraction-limited, and spectral resolving powers of 4000, 10000 & 20000 covering the 0.47 to 2.45 μm wavelength range. It is optimally suited to carry out a wide range of observing programs, focusing on detailed, spatially resolved studies of extended objects to unravel their morphology, kinematics and chemical composition, whilst also enabling ultra-sensitive observations of point sources. We present a synopsis of the key science cases motivating the instrument, the top level specifications, a description of the opto-mechanical concept, operation and calibration plan, and image quality and throughput budgets. Issues of expected performance, complementarity and synergies, as well as simulated observations are presented elsewhere in these proceedings[1]. © 2010 Copyright SPIE - The International Society for Optical Engineering.


The detection of a population of submillimeter-bright, strongly lensed galaxies

Science 330 (2010) 800-804

M Negrello, R Hopwood, G De Zotti, A Cooray, A Verma, J Bock, DT Frayer, MA Gurwell, A Omont, R Neri, H Dannerbauer, LL Leeuw, E Barton, J Cooke, S Kim, E Da Cunha, G Rodighiero, P Cox, DG Bonfield, MJ Jarvis, S Serjeant, RJ Ivison, S Dye, I Aretxaga, DH Hughes, E Ibar, F Bertoldi, I Valtchanov, S Eales, L Dunne, SP Driver, R Auld, S Buttiglione, A Cava, CA Grady, DL Clements, A Dariush, J Fritz, D Hill, JB Hornbeck, L Kelvin, G Lagache, M Lopez-Caniego, J Gonzalez-Nuevo, S Maddox, E Pascale, M Pohlen, EE Rigby, A Robotham, C Simpson, DJB Smith, P Temi, MA Thompson, BE Woodgate, DG York, JE Aguirre, A Beelen, A Blain, AJ Baker, M Birkinshaw, R Blundell, CM Bradford, D Burgarella, L Danese, JS Dunlop, S Fleuren, J Glenn, AI Harris, J Kamenetzky, RE Lupu, RJ Maddalena, BF Madore, PR Maloney, H Matsuhara, MJ Michaowski, EJ Murphy, BJ Naylor, H Nguyen, C Popescu, S Rawlings, D Rigopoulou, D Scott, KS Scott, M Seibert, I Smail, RJ Tuffs, JD Vieira, PP Van Der Werf, J Zmuidzinas

Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.


Expected performance and simulated observations of the instrument HARMONI at the European Extremely Large Telescope (E-ELT)

Proceedings of SPIE - The International Society for Optical Engineering 7735 (2010)

S Arribas, NA Thatte, M Tecza, T Goodsall, F Clarke, RL Davies, R Bacon, L Colina, D Lunney, E Mediavilla, A Remillieux, D Rigopoulou, M Swinbank, A Verma

HARMONI has been conceived as a workhorse visible and near-infrared (0.47-2.45 microns) integral field spectrograph for the European Extremely Large Telescope (E-ELT). It provides both seeing and diffraction limited observations at several spectral resolutions (R= 4000, 10000, 20000). HARMONI can operate with almost any flavor of AO (e.g. GLAO, LTAO, SCAO), and it is equipped with four spaxel scales (4, 10, 20 and 40 mas) thanks to which it can be optimally configured for a wide variety of science programs, from ultra-sensitive observations of point sources to highangular resolution spatially resolved studies of extended objects. In this paper we describe the expected performance of the instrument as well as its scientific potential. We show some simulated observations for a selected science program, and compare HARMONI with other ground and space based facilities, like VLT, ALMA, and JWST, commenting on their synergies and complementarities. © 2010 Copyright SPIE - The International Society for Optical Engineering.


In-flight calibration of the Herschel -SPIRE instrument

Astronomy and Astrophysics 518 (2010)

BM Swinyard, P Ade, JP Baluteau, H Aussel, MJ Barlow, GJ Bendo, D Benielli, J Bock, D Brisbin, A Conley, L Conversi, A Dowell, D Dowell, M Ferlet, T Fulton, J Glenn, A Glauser, D Griffin, M Griffin, S Guest, P Imhof, K Isaak, S Jones, K King, S Leeks, L Levenson, TL Lim, N Lu, G Makiwa, D Naylor, H Nguyen, S Oliver, P Panuzzo, A Papageorgiou, C Pearson, M Pohlen, E Polehampton, D Pouliquen, D Rigopoulou, S Ronayette, H Roussel, A Rykala, G Savini, B Schulz, A Schwartz, D Shupe, B Sibthorpe, S Sidher, AJ Smith, L Spencer, M Trichas, H Triou, I Valtchanov, R Wesson, A Woodcraft, CK Xu, M Zemcov, L Zhang

SPIRE, the Spectral and Photometric Imaging REceiver, is the Herschel Space Observatory's submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) covering 194-671 μm (447-1550 GHz). In this paper we describe the initial approach taken to the absolute calibration of the SPIRE instrument using a combination of the emission from the Herschel telescope itself and the modelled continuum emission from solar system objects and other astronomical targets. We present the photometric, spectroscopic and spatial accuracy that is obtainable in data processed through the "standard" pipelines. The overall photometric accuracy at this stage of the mission is estimated as 15% for the photometer and between 15 and 50% for the spectrometer. However, there remain issues with the photometric accuracy of the spectra of low flux sources in the longest wavelength part of the SPIRE spectrometer band. The spectrometer wavelength accuracy is determined to be better than 1/10th of the line FWHM. The astrometric accuracy in SPIRE maps is found to be 2 arcsec when the latest calibration data are used. The photometric calibration of the SPIRE instrument is currently determined by a combination of uncertainties in the model spectra of the astronomical standards and the data processing methods employed for map and spectrum calibration. Improvements in processing techniques and a better understanding of the instrument performance will lead to the final calibration accuracy of SPIRE being determined only by uncertainties in the models of astronomical standards. © 2010 ESO.

Pages