Publications by Vivien Parmentier


A non-grey analytical model for irradiated atmospheres. I: Derivation

Astronomy and Astrophysics EDP Sciences (0)

V Parmentier, T Guillot

Context. Semi-grey atmospheric models (with one opacity for the visible and one opacity for the infrared) are useful to understand the global structure of irradiated atmospheres, their dynamics and the interior structure and evolution of planets, brown dwarfs and stars. But when compared to direct numerical radiative transfer calculations for irradiated exoplanets, these models systematically overestimate the temperatures at low optical depth, independently of the opacity parameters. We wish to understand why semi-grey models fail at low optical depths, and provide a more accurate approximation to the atmospheric structure by accounting for the variable opacity in the infrared. Our analytical irradiated non-grey model is found to provide a range of temperatures that is consistent with that obtained by numerical calculations. We find that even for slightly non-grey thermal opacities the temperature structure differs significantly from previous semi-grey models. For small values of beta (expected when lines are dominant), we find that the non-grey effects are confined to low-optical depths. However, for beta larger than 0.5 (appropriate in the presence of bands with a wavelength-dependence smaller or comparable with the width of the Planck function), we find that the temperature structure is affected even down to infrared optical depths unity and deeper as a result of the so-called blanketing effect. The expressions that we derive may be used to provide a proper functional form for algorithms that invert the atmospheric properties from spectral information. Because a full atmospheric structure can be calculated directly, these expressions should be useful for simulations of the dynamics of these atmospheres and of the thermal evolution of the planets. Finally, they should be used to test full radiative transfer models and improve their convergence.


Show full publication list