# Publications by Lance Miller

## Towards emulating cosmic shear data: revisiting the calibration of the shear measurements for the Kilo-Degree Survey

Astronomy and Astrophysics EDP Sciences **624** (2019) A92

Exploiting the full statistical power of future cosmic shear surveys will necessitate improvements to the accuracy with which the gravitational lensing signal is measured. We present a framework for calibrating shear with image simulations that demonstrates the importance of including realistic correlations between galaxy morphology, size and more importantly, photometric redshifts. This realism is essential so that selection and shape measurement biases can be calibrated accurately for a tomographic cosmic shear analysis. We emulate Kilo-Degree Survey (KiDS) observations of the COSMOS field using morphological information from {\it Hubble} Space Telescope imaging, faithfully reproducing the measured galaxy properties from KiDS observations of the same field. We calibrate our shear measurements from lensfit, and find through a range of sensitivity tests that lensfit is robust and unbiased within the allowed 2 per cent tolerance of our study. Our results show that the calibration has to be performed by selecting the tomographic samples in the simulations, consistent with the actual cosmic shear analysis, because the joint distributions of galaxy properties are found to vary with redshift. Ignoring this redshift variation could result in misestimating the shear bias by an amount that exceeds the allowed tolerance. To improve the calibration for future cosmic shear analyses, it will be essential to also correctly account for the measurement of photometric redshifts, which requires simulating multi-band observations.

## KiDS-i-800: Comparing weak gravitational lensing measurements from same-sky surveys

Monthly Notices of the Royal Astronomical Society Oxford University Press **477** (2018) 4285-4307

We present a weak gravitational lensing analysis of 815 deg2of i-band imaging from the Kilo-Degree Survey (KiDS-i-800). In contrast to the deep r-band observations, which take priority during excellent seeing conditions and form the primary KiDS data set (KiDS-r-450), the complementary yet shallower KiDS-i-800 spans a wide range of observing conditions. The overlapping KiDS-i-800 and KiDS-r-450 imaging therefore provides a unique opportunity to assess the robustness of weak lensing measurements. In our analysis we introduce two new 'null' tests. The 'nulled' two-point shear correlation function uses a matched catalogue to show that the calibrated KiDS-i-800 and KiDS-r-450 shear measurements agree at the level of 1 ± 4 per cent.We use five galaxy lens samples to determine a 'nulled' galaxy-galaxy lensing signal from the full KiDS-i-800 and KiDS-r-450 surveys and find that the measurements agree to 7 ± 5 per cent when the KiDS-i-800 source redshift distribution is calibrated using either spectroscopic redshifts, or the 30-band photometric redshifts from the COSMOS survey.

## Weak-lensing study in VOICE survey - I. Shear measurement

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY **479** (2018) 3858-3872

## Weak lensing study in VOICE survey - II. Shear bias calibrations

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY **478** (2018) 2388-2398

## Radio weak lensing shear measurement in the visibility domain - II. Source extraction

Monthly Notices of the Royal Astronomical Society Oxford University Press **476** (2018) 2053–2062-

This paper extends the method introduced in Rivi et al. (2016b) to measure galaxy ellipticities in the visibility domain for radio weak lensing surveys. In that paper we focused on the development and testing of the method for the simple case of individual galaxies located at the phase centre, and proposed to extend it to the realistic case of many sources in the field of view by extracting visibilities of each source with a faceting technique, taking into account the contamination from the other sources. In this second paper we present a detailed algorithm for source extraction in the visibility domain and show its effectiveness as a function of the source number density by running simulations of SKA1-MID observations in the band 950-1150 MHz and comparing original and measured values of galaxies' ellipticities. Shear measurements from a realistic population of 10^4 galaxies randomly located in a field of view of 1 deg^2 (i.e. the source density expected for the current radio weak lensing survey proposal with SKA1) are also performed. At SNR >= 10, the multiplicative bias is only a factor 1.5 worse than what found when analysing isolated sources, and is still comparable to the bias values reported for similar measurement methods at optical wavelengths. The additive bias is unchanged from the case of isolated sources, but is significantly larger than typically found in optical surveys. This bias depends on the shape of the Point Spread Function (PSF) and we suggest that a uv-plane weighting scheme to produce a more isotropic PSF could reduce and control additive bias.

## KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering

Monthly Notices of the Royal Astronomical Society Oxford University Press **474** (2017) 4894–4924-

We perform a combined analysis of cosmic shear tomography, galaxy-galaxy lensing tomography, and redshift-space multipole power spectra (monopole and quadrupole) using 450 deg$^2$ of imaging data by the Kilo Degree Survey (KiDS) overlapping with two spectroscopic surveys: the 2-degree Field Lensing Survey (2dFLenS) and the Baryon Oscillation Spectroscopic Survey (BOSS). We restrict the galaxy-galaxy lensing and multipole power spectrum measurements to the overlapping regions with KiDS, and self-consistently compute the full covariance between the different observables using a large suite of $N$-body simulations. We methodically analyze different combinations of the observables, finding that galaxy-galaxy lensing measurements are particularly useful in improving the constraint on the intrinsic alignment amplitude (by 30%, positive at $3.5\sigma$ in the fiducial data analysis), while the multipole power spectra are useful in tightening the constraints along the lensing degeneracy direction (e.g. factor of two stronger matter density constraint in the fiducial analysis). The fully combined constraint on $S_8 \equiv \sigma_8 \sqrt{\Omega_{\rm m}/0.3} = 0.742 \pm 0.035$, which is an improvement by 20% compared to KiDS alone, corresponds to a $2.6\sigma$ discordance with Planck, and is not significantly affected by fitting to a more conservative set of scales. Given the tightening of the parameter space, we are unable to resolve the discordance with an extended cosmology that is simultaneously favored in a model selection sense, including the sum of neutrino masses, curvature, evolving dark energy, and modified gravity. The complementarity of our observables allows for constraints on modified gravity degrees of freedom that are not simultaneously bounded with either probe alone, and up to a factor of three improvement in the $S_8$ constraint in the extended cosmology compared to KiDS alone.

## A rapid occultation event in NGC 3227

Monthly Notices of the Royal Astronomical Society **481** (2018) 2470-2478

© 2018 The Author(s). NGC 3227 exhibits rapid flux and spectral variability in the X-ray band. To understand this behaviour, we conducted a coordinated observing campaign using 320 ks of XMM- Newton exposures together with 160 ks of overlapping NuSTAR observations, spanning a month. Here, we present a rapid variability event that occurs toward the end of the campaign. The spectral hardening event is accompanied by a change in the depth of an unresolved transition array (UTA), whose time-dependent behaviour is resolved using the RGS data. This UTA fingerprint allows us to identify this as a transit event, where a clump of gas having NH ~ 5 × 1022 atoms cm-2, log Ξ ~ 2 occults ~ 60 per cent of the continuum photons over the course of approximately a day. This occulting gas is likely associated with clouds in the inner broad-line region. An additional zone of gas with lower column and higher ionization, matches the outflow velocity of the variable zone, and may represent transmission through the cloud limb.

## KiDS plus GAMA: Cosmology constraints from a joint analysis of cosmic shear, galaxy-galaxy lensing, and angular clustering

Monthly Notices of the Royal Astronomical Society Oxford University Press **476** (2018) 4662-4689

We present cosmological parameter constraints from a joint analysis of three cosmological probes: the tomographic cosmic shear signal in~450 deg2of data from the Kilo Degree Survey (KiDS), the galaxy-matter cross-correlation signal of galaxies from the Galaxies And Mass Assembly (GAMA) survey determined with KiDS weak lensing, and the angular correlation function of the same GAMA galaxies. We use fast power spectrum estimators that are based on simple integrals over the real-space correlation functions, and show that they are practically unbiased over relevant angular frequency ranges. We test our full pipeline on numerical simulations that are tailored to KiDS and retrieve the input cosmology. By fitting different combinations of power spectra, we demonstrate that the three probes are internally consistent. For all probes combined, we obtain S8≡ σ8√ Ωm/0.3 = 0.800-0.027+0.029, consistent with Planck and the fiducial KiDS-450 cosmic shear correlation function results. Marginalizing over wide priors on the mean of the tomographic redshift distributions yields consistent results for S8with an increase of 28 per cent in the error. The combination of probes results in a 26 per cent reduction in uncertainties of S8over using the cosmic shear power spectra alone. The main gain from these additional probes comes through their constraining power on nuisance parameters, such as the galaxy intrinsic alignment amplitude or potential shifts in the redshift distributions, which are up to a factor of 2 better constrained compared to using cosmic shear alone, demonstrating the value of large-scale structure probe combination.

## Agent-based modelling to predict policy outcomes: A food waste recycling example

Environmental Science & Policy Elsevier **87** (2018) 85-91

Optimising policy choices to steer social/economic systems efficiently towards desirable outcomes is challenging. The inter-dependent nature of many elements of society and the economy means that policies designed to promote one particular aspect often have secondary, unintended, effects. In order to make rational decisions, methodologies and tools to assist the development of intuition in this complex world are needed. One approach is the use of agent-based models. These have the ability to capture essential features and interactions and predict outcomes in a way that is not readily achievable through either equations or words alone. In this paper we illustrate how agent-based models can be used in a policy setting by using an example drawn from the biowaste industry. This example describes the growth of in-vessel composting and anaerobic digestion to reduce food waste going to landfill in response to policies in the form of taxes and financial incentives. The fundamentally dynamic nature of an agent-based modelling approach is used to demonstrate that policy outcomes depend not just on current policy levels but also on the historical path taken.

## Lensing is low: Cosmology, galaxy formation, or new physics?

Monthly Notices of the Royal Astronomical Society Oxford University Press **467** (2017) 3024-3047

We present high signal-to-noise galaxy-galaxy lensing measurements of the BOSS CMASS sample using 250 square degrees of weak lensing data from CFHTLenS and CS82. We compare this signal with predictions from mock catalogs trained to match observables including the stellar mass function and the projected and two dimensional clustering of CMASS. We show that the clustering of CMASS, together with standard models of the galaxy-halo connection, robustly predicts a lensing signal that is 20-40% larger than observed. Detailed tests show that our results are robust to a variety of systematic effects. Lowering the value of $S_{\rm 8}=\sigma_{\rm 8} \sqrt{\Omega_{\rm m}/0.3}$ compared to Planck2015 reconciles the lensing with clustering. However, given the scale of our measurement ($r<10$ $h^{-1}$ Mpc), other effects may also be at play and need to be taken into consideration. We explore the impact of baryon physics, assembly bias, massive neutrinos, and modifications to general relativity on $\Delta\Sigma$ and show that several of these effects may be non-negligible given the precision of our measurement. Disentangling cosmological effects from the details of the galaxy-halo connection, the effects of baryons, and massive neutrinos, is the next challenge facing joint lensing and clustering analyses. This is especially true in the context of large galaxy samples from Baryon Acoustic Oscillation surveys with precise measurements but complex selection functions.

## KiDS-450: Testing extensions to the standard cosmological model

Monthly Notices of the Royal Astronomical Society Oxford University Press (2017)

We test extensions to the standard cosmological model with weak gravitational lensing tomography using 450 deg$^2$ of imaging data from the Kilo Degree Survey (KiDS). In these extended cosmologies, which include massive neutrinos, nonzero curvature, evolving dark energy, modified gravity, and running of the scalar spectral index, we also examine the discordance between KiDS and cosmic microwave background measurements from Planck. The discordance between the two datasets is largely unaffected by a more conservative treatment of the lensing systematics and the removal of angular scales most sensitive to nonlinear physics. The only extended cosmology that simultaneously alleviates the discordance with Planck and is at least moderately favored by the data includes evolving dark energy with a time-dependent equation of state (in the form of the $w_0-w_a$ parameterization). In this model, the respective $S_8 = \sigma_8 \sqrt{\Omega_{\rm m}/0.3}$ constraints agree at the $1\sigma$ level, and there is `substantial concordance' between the KiDS and Planck datasets when accounting for the full parameter space. Moreover, the Planck constraint on the Hubble constant is wider than in LCDM and in agreement with the Riess et al. (2016) direct measurement of $H_0$. The dark energy model is moderately favored as compared to LCDM when combining the KiDS and Planck measurements, and remains moderately favored after including an informative prior on the Hubble constant. In both of these scenarios, the dark energy parameters are discrepant with a cosmological constant at the $3\sigma$ level. Moreover, KiDS constrains the sum of neutrino masses to 4.0 eV (95% CL), finds no preference for time or scale dependent modifications to the metric potentials, and is consistent with flatness and no running of the spectral index. The analysis code is publicly available at https://github.com/sjoudaki/kids450

## Calibration of weak-lensing shear in the Kilo-Degree Survey

Monthly Notices of the Royal Astronomical Society Oxford University Press **467** (2017) 1627-1651

We describe and test the pipeline used to measure the weak lensing shear signal from the Kilo Degree Survey (KiDS). It includes a novel method of `self-calibration' that partially corrects for the effect of noise bias. We also discuss the `weight bias' that may arise in optimally-weighted measurements, and present a scheme to mitigate that bias. To study the residual biases arising from both galaxy selection and shear measurement, and to derive an empirical correction to reduce the shear biases to $\lesssim 1\%$, we create a suite of simulated images whose properties are close to those of the KiDS survey observations. We find that the use of `self-calibration' reduces the additive and multiplicative shear biases significantly, although further correction via a calibration scheme is required, which also corrects for a dependence of the bias on galaxy properties. We find that the calibration relation itself is biased by the use of noisy, measured galaxy properties, which may limit the final accuracy that can be achieved. We assess the accuracy of the calibration in the tomographic bins used for the KiDS cosmic shear analysis, testing in particular the effect of possible variations in the uncertain distributions of galaxy size, magnitude and ellipticity, and conclude that the calibration procedure is accurate at the level of multiplicative bias $\lesssim 1\%$ required for the KiDS cosmic shear analysis.

## CODEX weak lensing: Concentration of galaxy clusters at z ~ 0.5

Monthly Notices of the Royal Astronomical Society Oxford University Press **468** (2017) 1092-1116

We present a stacked weak lensing analysis of 27 richness selected galaxy clusters at $0.40 \leqslant z \leqslant 0.62$ in the CODEX survey. The fields were observed in 5 bands with the CFHT. We measure the stacked surface mass density profile with a $14\sigma$ significance in the radial range $0.1 < R\ Mpc\ h^{-1} < 2.5$. The profile is well described by the halo model, with the main halo term following an NFW profile and including the off-centring effect. We select the background sample using a conservative colour-magnitude method to reduce the potential systematic errors and contamination by cluster member galaxies. We perform a Bayesian analysis for the stacked profile and constrain the best-fit NFW parameters $M_{200c} = 6.6^{+1.0}_{-0.8} \times 10^{14} h^{-1} M_{\odot}$ and $c_{200c} = 3.7^{+0.7}_{-0.6}$. The off-centring effect was modelled based on previous observational results found for redMaPPer SDSS clusters. Our constraints on $M_{200c}$ and $c_{200c}$ allow us to investigate the consistency with numerical predictions and select a concentration-mass relation to describe the high richness CODEX sample. Comparing our best-fit values for $M_{200c}$ and $c_{200c}$ with other observational surveys at different redshifts, we find no evidence for evolution in the concentration-mass relation, though it could be mitigated by particular selection functions. Similar to previous studies investigating the X-ray luminosity-mass relation, our data suggests a lower evolution than expected from self-similarity.

## Next Generation Virgo Cluster Survey. XXI. The weak lensing masses of the CFHTLS and NGVS RedGOLD galaxy clusters and calibration of the optical richness

Astrophysical Journal American Astronomical Society **848** (2017) 114

We measured stacked weak lensing cluster masses for a sample of 1323 galaxy clusters detected by the RedGOLD algorithm in the Canada–France–Hawaii Telescope Legacy Survey W1 and the Next Generation Virgo Cluster Survey at $0.2\lt z\lt 0.5$, in the optical richness range $10\lt \lambda \lt 70$. This is the most comprehensive lensing study of a $\sim 100 \% $ complete and $\sim 80 \% $ pure optical cluster catalog in this redshift range. We test different mass models, and our final model includes a basic halo model with a Navarro Frenk and White profile, as well as correction terms that take into account cluster miscentering, non-weak shear, the two-halo term, the contribution of the Brightest Cluster Galaxy, and an a posteriori correction for the intrinsic scatter in the mass–richness relation. With this model, we obtain a mass–richness relation of $\mathrm{log}{M}_{200}/{M}_{\odot }\,=(14.46\pm 0.02)+(1.04\pm 0.09)\mathrm{log}(\lambda /40)$ (statistical uncertainties). This result is consistent with other published lensing mass–richness relations. We give the coefficients of the scaling relations between the lensing mass and X-ray mass proxies, L X and T X, and compare them with previous results. When compared to X-ray masses and mass proxies, our results are in agreement with most previous results and simulations, and consistent with the expected deviations from self-similarity.

## KiDS-450: The tomographic weak lensing power spectrum and constraints on cosmological parameters

Monthly Notices of the Royal Astronomical Society Oxford University Press **471** (2017) 4412–4435-

We present measurements of the weak gravitational lensing shear power spectrum based on $450$ sq. deg. of imaging data from the Kilo Degree Survey. We employ a quadratic estimator in two and three redshift bins and extract band powers of redshift auto-correlation and cross-correlation spectra in the multipole range $76 \leq \ell \leq 1310$. The cosmological interpretation of the measured shear power spectra is performed in a Bayesian framework assuming a $\Lambda$CDM model with spatially flat geometry, while accounting for small residual uncertainties in the shear calibration and redshift distributions as well as marginalising over intrinsic alignments, baryon feedback and an excess-noise power model. Moreover, massive neutrinos are included in the modelling. The cosmological main result is expressed in terms of the parameter combination $S_8 \equiv \sigma_8 \sqrt{\Omega_{\rm m}/0.3}$ yielding $S_8 = \ 0.651 \pm 0.058$ (3 z-bins), confirming the recently reported tension in this parameter with constraints from Planck at $3.2\sigma$ (3 z-bins). We cross-check the results of the 3 z-bin analysis with the weaker constraints from the 2 z-bin analysis and find them to be consistent. The high-level data products of this analysis, such as the band power measurements, covariance matrices, redshift distributions, and likelihood evaluation chains are available at http://kids.strw.leidenuniv.nl/

## Measuring light echoes in NGC 4051

Monthly Notices of the Royal Astronomical Society Oxford University Press **467** (2017) 3924-3933

Five archived X-ray observations of NGC 4051, taken using the NuSTAR observatory, have been analysed, revealing lags between flux variations in bands covering a wide range of X-ray photon energy. In all pairs of bands compared, the harder band consistently lags the softer band by at least 1000s, at temporal frequencies ~5E-5 Hz. In addition, soft-band lags up to 400s are measured at frequencies ~2E-4 Hz. Light echos from an excess of soft band emission in the inner accretion disk cannot explain the lags in these data, as they are seen in cross-correlations with energy bands where the softer band is expected to have no contribution from reflection. The basic properties of the time delays have been parameterised by fitting a top hat response function that varies with photon energy, taking fully into account the covariance between measured time lag values. The low-frequency hard-band lags and the transition to soft-band lags are consistent with time lags arising as reverberation delays from circumnuclear scattering of X-rays, although greater model complexity is required to explain the entire spectrum of lags. The scattered fraction increases with increasing photon energy as expected, and the scattered fraction is high, indicating the reprocessor to have a global covering fraction ~50% around the continuum source. Circumnuclear material, possibly associated with a disk wind at a few hundred gravitational radii from the primary X-ray source, may provide suitable reprocessing.

## KiDS-450: Tomographic cross-correlation of galaxy shear with Planck lensing

Monthly Notices of the Royal Astronomical Society Oxford University Press **471** (2017) 1619–1633-

We present the tomographic cross-correlation between galaxy lensing measured in the Kilo Degree Survey (KiDS-450) with overlapping lensing measurements of the cosmic microwave background (CMB), as detected by Planck 2015. We compare our joint probe measurement to the theoretical expectation for a flat $\Lambda$CDM cosmology, assuming the best-fitting cosmological parameters from the KiDS-450 cosmic shear and Planck CMB analyses. We find that our results are consistent within $1\sigma$ with the KiDS-450 cosmology, with an amplitude re-scaling parameter $A_{\rm KiDS} = 0.86 \pm 0.19$. Adopting a Planck cosmology, we find our results are consistent within $2\sigma$, with $A_{\it Planck} = 0.68 \pm 0.15$. We show that the agreement is improved in both cases when the contamination to the signal by intrinsic galaxy alignments is accounted for, increasing $A$ by $\sim 0.1$. This is the first tomographic analysis of the galaxy lensing -- CMB lensing cross-correlation signal, and is based on five photometric redshift bins. We use this measurement as an independent validation of the multiplicative shear calibration and of the calibrated source redshift distribution at high redshifts. We find that constraints on these two quantities are strongly correlated when obtained from this technique, which should therefore not be considered as a stand-alone competitive calibration tool.

## The third data release of the Kilo-Degree Survey and associated data products

Astronomy & Astrophysics EDP Sciences **604** (2017) A134-

<h4>Context</h4> <p>The Kilo-Degree Survey (KiDS) is an ongoing optical wide-field imaging survey with the OmegaCAM camera at the VLT Survey Telescope. It aims to image 1500 square degrees in four filters (ugri). The core science driver is mapping the large-scale matter distribution in the Universe, using weak lensing shear and photometric redshift measurements. Further science cases include galaxy evolution, Milky Way structure, detection of high-redshift clusters, and finding rare sources such as strong lenses and quasars.</p> <h4>Aims</h4> <p>Here we present the third public data release and several associated data products, adding further area, homogenized photometric calibration, photometric redshifts and weak lensing shear measurements to the first two releases.</p> <h4>Methods</h4> <p>A dedicated pipeline embedded in the Astro-WISE information system is used for the production of the main release. Modifications with respect to earlier releases are described in detail. Photometric redshifts have been derived using both Bayesian template fitting, and machine-learning techniques. For the weak lensing measurements, optimized procedures based on the THELI data reduction and lensfit shear measurement packages are used.</p> <h4>Results</h4> <p>In this third data release an additional 292 new survey tiles (≈ 300 deg2) stacked ugri images are made available, accompanied by weight maps, masks, and source lists. The multi-band catalogue, including homogenized photometry and photometric redshifts, covers the combined DR1, DR2 and DR3 footprint of 440 survey tiles (447 deg2). Limiting magnitudes are typically 24.3, 25.1, 24.9, 23.8 (5σ in a 200aperture) in ugri, respectively, and the typical r-band PSF size is less than 0.700. The photometric homogenization scheme ensures accurate colors and an absolute calibration stable to ≈ 2% for gri and ≈ 3% in u. Separately released for the combined area of all KiDS releases to date are a weak lensing shear catalogue and photometric redshifts based on two different machine-learning techniques.</p>

## Galaxy-halo alignments in the Horizon-AGN cosmological hydrodynamical simulation

Monthly Notices of the Royal Astronomical Society Oxford University Press (2017)

Intrinsic alignments of galaxies are a significant astrophysical systematic affecting cosmological constraints from weak gravitational lensing. Obtaining numerical predictions from hydrodynamical simulations of expected survey volumes is expensive, and a cheaper alternative relies on populating large dark matter-only simulations with accurate models of alignments calibrated on smaller hydrodynamical runs. This requires connecting the shapes and orientations of galaxies to those of dark matter halos and to the large-scale structure. In this paper, we characterise galaxy-halo alignments in the Horizon-AGN cosmological hydrodynamical simulation. We compare the shapes and orientations of galaxies in the redshift range $0

## RCSLenS: the Red Cluster Sequence Lensing Survey

Monthly Notices of the Royal Astronomical Society Oxford University Press **463** (2016) 635-654

We present the Red-sequence Cluster Lensing Survey (RCSLenS), an application of the methods developed for the Canada France Hawaii Telescope Lensing Survey (CFHTLenS) to the ~785deg$^2$, multi-band imaging data of the Red-sequence Cluster Survey 2 (RCS2). This project represents the largest public, sub-arcsecond seeing, multi-band survey to date that is suited for weak gravitational lensing measurements. With a careful assessment of systematic errors in shape measurements and photometric redshifts we extend the use of this data set to allow cross-correlation analyses between weak lensing observables and other data sets. We describe the imaging data, the data reduction, masking, multi-colour photometry, photometric redshifts, shape measurements, tests for systematic errors, and a blinding scheme to allow for more objective measurements. In total we analyse 761 pointings with r-band coverage, which constitutes our lensing sample. Residual large-scale B-mode systematics prevent the use of this shear catalogue for cosmic shear science. The effective number density of lensing sources over an unmasked area of 571.7deg$^2$ and down to a magnitude limit of r~24.5 is 8.1 galaxies per arcmin$^2$ (weighted: 5.5 arcmin$^{-2}$) distributed over 14 patches on the sky. Photometric redshifts based on 4-band griz data are available for 513 pointings covering an unmasked area of 383.5 deg$^2$ We present weak lensing mass reconstructions of some example clusters as well as the full survey representing the largest areas that have been mapped in this way. All our data products are publicly available through CADC at http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/community/rcslens/query.html in a format very similar to the CFHTLenS data release.