Publications by Jena Meinecke


Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma

Nature Communications Springer Nature 9 (2018) 591

P Tzeferacos, A Rigby, A Bott, A Bell, R Bingham, A Casner, F Cattaneo, EM Churazov, J Emig, F Fiuza, CB Forest, J Foster, C Graziani, J Katz, M Koenig, CK Li, J Meinecke, R Petrasso, HS Park, BA Remington, JS Ross, D Ryu, D Ryutov, TG White, B Reville

Magnetic fields are ubiquitous in the Universe. Diffuse radiosynchrotron emission observations and Faraday rotation measurements have revealed magnetic field strengths ranging from a few nG and tens of µG in extragalactic disks, halos and clusters [1], up to hundreds of TG in magnetars, as inferred from their spin-down [2]. The energy density of these fields is typically comparable to the energy density of the fluid motions of the plasma in which they are embedded, making magnetic fields essential players in the dynamics of the luminous matter. The standard theoretical model for the origin of these strong magnetic fields is through the amplification of tiny seed fields via turbulent dynamo to the level consistent with current observations [3–7]. Here we demonstrate, using laser-produced colliding plasma flows, that turbulence is indeed capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. These results support the notion that turbulent dynamo is a viable mechanism responsible for the observed present-day magnetization.


Transition from collisional to collisionless regimes in interpenetrating plasma flows on the National Ignition Facility

Physical Review Letters American Physical Society 118 (2017) 185003

JS Ross, DP Higginson, D Ryutov, F Fiuza, R Hatarik, CM Huntington, DH Kalantar, A Link, BB Pollock, BA Remington, HG Rinderknecht, GF Swadling, DP Turnbull, S Weber, S Wilks, DH Froula, T Morita, MJ Rosenberg, Y Sakawa, H Takabe, RP Drake, C Kuranz, G Gregori, J Meinecke, MC Levy

A study of the transition from collisional to collisionless plasma flows has been carried out at the National Ignition Facility using high Mach number (M>4) counterstreaming plasmas. In these experiments, CD-CD and CD-CH planar foils separated by 6-10 mm are irradiated with laser energies of 250 kJ per foil, generating ∼1000  km/s plasma flows. Varying the foil separation distance scales the ion density and average bulk velocity and, therefore, the ion-ion Coulomb mean free path, at the interaction region at the midplane. The characteristics of the flow interaction have been inferred from the neutrons and protons generated by deuteron-deuteron interactions and by x-ray emission from the hot, interpenetrating, and interacting plasmas. A localized burst of neutrons and bright x-ray emission near the midpoint of the counterstreaming flows was observed, suggesting strong heating and the initial stages of shock formation. As the separation of the CD-CH foils increases we observe enhanced neutron production compared to particle-in-cell simulations that include Coulomb collisions, but do not include collective collisionless plasma instabilities. The observed plasma heating and enhanced neutron production is consistent with the initial stages of collisionless shock formation, mediated by the Weibel filamentation instability.


Time evolution and asymmetry of a laser produced blast wave

Physics of Plasmas AIP Publishing 24 (2017) 103124

ER Tubman, RHH Scott, HW Doyle, J Meinecke, H Ahmed, RAB Alraddadi, R Bolis, JE Cross, R Crowston, D Doria, D Lamb, B Reville, APL Robinson, P Tzeferacos, M Borghesi, G Gregori, NC Woolsey

Studies of a blast wave produced from carbon rods and plastic spheres in an argon background gas have been conducted using the Vulcan laser at the Rutherford Appleton Laboratory. A laser of 1500 J was focused onto these targets, and rear-side observations of an emission front were recorded using a fast-framing camera. The emission front is asymmetrical in shape and tends to a more symmetrical shape as it progresses due to the production of a second shock wave later in time, which pushes out the front of the blast wave. Plastic spheres produce faster blast waves, and the breakthrough of the second shock is visible before the shock stalls. The results are presented to demonstrate this trend, and similar evolution dynamics of experimental and simulation data from the FLASH radiation-hydrodynamics code are observed.


Magneto-optic probe measurements in low density-supersonic jets

Journal of Instrumentation IOP Publishing 12 (2017) P12001

M Oliver, T White, P Mabey, M Kuhn-Kauffeldt, L Dohl, R Bingham, R Clarke, P Graham, R Heathcote, M Koenig, Y Kuramitsu, DQ Lamb, J Meinecke, T Michel, F Miniati, M Notley, B Reville, S Sarkar, Y Sakawa, A Schekochihin, P Tzeferacos, N Woolsey, G Gregori

A magneto-optic probe was used to make time-resolved measurements of the magnetic field in both a single supersonic jet and in a collision between two supersonic turbulent jets, with an electron density ⇡ 1018 cm3 and electron temperature ⇡ 4 eV. The magneto-optic data indicated the magnetic field reaches B ⇡ 200 G. The measured values are compared against those obtained with a magnetic induction probe. Good agreement of the time-dependent magnetic field measured using the two techniques is found.


Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo

Physics of Plasmas AIP Publishing 24 (2017) 041404

P Tzeferacos, A Rigby, A Bott, A Bell, R Bingham, A Casner, F Cattaneo, EM Churazov, J Emig, N Flocke, F Fiuza, CB Forest, J Foster, C Graziani, J Katz, M Koenig, C-K Li, J Meinecke, R Petrasso, H-S Park, BA Remington, JS Ross, D Ryu, D Ryutov, TG White

The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputer at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. We validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.


Laboratory astrophysical collisionless shock experiments on Omega and NIF

Journal of Physics: Conference Series IOP Publishing Ltd. 688 (2016) 012084-012084

HS Park, C Kuranz, MC Levy, CK Li, J Meinecke, Y Sakawa, A Spitkovsky, D Ryutov, D Casey, D Froula, G Gregori, NL Kugland, T Morita, R Petrasso, C Plechaty, B Remington, H Takabe, JS Ross, CM Huntington, F Fiuza, RP Drake, G Fiksel

We are performing scaled astrophysics experiments on Omega and on NIF. Laser driven counter-streaming interpenetrating supersonic plasma flows can be studied to understand astrophysical electromagnetic plasma phenomena in a controlled laboratory setting. In our Omega experiments, the counter-streaming flow plasma state is measured using Thomson scattering diagnostics, demonstrating the plasma flows are indeed super-sonic and in the collisionless regime. We observe a surprising additional electron and ion heating from ion drag force in the double flow experiments that are attributed to the ion drag force and electrostatic instabilities. [1] A proton probe is used to image the electric and magnetic fields. We observe unexpected large, stable and reproducible electromagnetic field structures that arise in the counter-streaming flows [2]. The Biermann battery magnetic field generated near the target plane, advected along the flows, and recompressed near the midplane explains the cause of such self-organizing field structures [3]. A D3He implosion proton probe image showed very clear filamentary structures; three-dimensional Particle-In-Cell simulations and simulated proton radiography images indicate that these filamentary structures are generated by Weibel instabilities and that the magnetization level (ratio of magnetic energy over kinetic energy in the system) is ∼0.01 [4]. These findings have very high astrophysical relevance and significant implications. We expect to observe true collisionless shock formation when we use >100 kJ laser energy on NIF.


Proton imaging of an electrostatic field structure formed in laser-produced counter-streaming plasmas

8th International Conference on Inertial Fusion Sciences and Applications (IFSA 2013) 8–13 September 2013, Nara, Japan IOP Publishing Ltd. 688 (2016) 012071-012071
Part of a series from Journal of Physics: Conference Series

T Morita, NL Kugland, W Wan, R Crowston, RP Drake, F Fiuza, G Gregori, C Huntington, T Ishikawa, M Koenig, C Kuranz, MC Levy, N Woolsey, HS Park, D Martinez, J Meinecke, F Miniati, CD Murphy, A Pelka, C Plechaty, R Presura, N Quirós, BA Remington, B Reville, JS Ross

We report the measurements of electrostatic field structures associated with an electrostatic shock formed in laser-produced counter-streaming plasmas with proton imaging. The thickness of the electrostatic structure is estimated from proton images with different proton kinetic energies from 4.7 MeV to 10.7 MeV. The width of the transition region is characterized by electron scale length in the laser-produced plasma, suggesting that the field structure is formed due to a collisionless electrostatic shock.


Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows

NATURE PHYSICS 11 (2015) 173-176

CM Huntington, F Fiuza, JS Ross, AB Zylstra, RP Drake, DH Froula, G Gregori, NL Kugland, CC Kuranz, MC Levy, CK Li, J Meinecke, T Morita, R Petrasso, C Plechaty, BA Remington, DD Ryutov, Y Sakawa, A Spitkovsky, H Takabe, H-S Park


FLASH MHD simulations of experiments that study shock-generated magnetic fields

High Energy Density Physics Elsevier 17 (2014) 24-31

P Tzeferacos, M Fatenejad, N Flocke, C Graziani, G Gregori, DQ Lamb, D Lee, J Meinecke, A Scopatz, K Weide

We summarize recent additions and improvements to the high energy density physics capabilities in FLASH, highlighting new non-ideal magneto-hydrodynamic (MHD) capabilities. We then describe 3D Cartesian and 2D cylindrical FLASH MHD simulations that have helped to design and analyze experiments conducted at the Vulcan laser facility. In these experiments, a laser illuminates a carbon rod target placed in a gas-filled chamber. A magnetic field diagnostic (called a Bdot) employing three very small induction coils is used to measure all three components of the magnetic field at a chosen point in space. The simulations have revealed that many fascinating physical processes occur in the experiments. These include megagauss magnetic fields generated by the interaction of the laser with the target via the Biermann battery mechanism, which are advected outward by the vaporized target material but decrease in strength due to expansion and resistivity; magnetic fields generated by an outward expanding shock via the Biermann battery mechanism; and a breakout shock that overtakes the first wave, the contact discontinuity between the target material and the gas, and then the initial expanding shock. Finally, we discuss the validation and predictive science we have done for this experiment with FLASH.


Collisionless shock experiments with lasers and observation of Weibel instabilities

PHYSICS OF PLASMAS 22 (2015) ARTN 056311

H-S Park, CM Huntington, F Fiuza, RP Drake, DH Froula, G Gregori, M Koenig, NL Kugland, CC Kuranz, DQ Lamb, MC Levy, CK Li, J Meinecke, T Morita, RD Petrasso, BB Pollock, BA Remington, HG Rinderknecht, M Rosenberg, JS Ross, DD Ryutov, Y Sakawa, A Spitkovsky, H Takabe, DP Turnbull, P Tzeferacos, SV Weber, AB Zylstra


Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas.

Proceedings of the National Academy of Sciences of the United States of America National Academy of Sciences 112 (2015) 8211-8215

J Meinecke, P Tzeferacos, AR Bell, EM Churazov, R Bingham, RJ Clarke, H Doyle, R Crowston, R Heathcote, RP Drake, M Koenig, Y Kuramitsu, CC Kuranz, MJ MacDonald, D Lee, CD Murphy, MM Notley, H-S Park, A Ravasio, A Pelka, B Reville, Y Sakawa, WC Wan, NC Woolsey, R Yurchak

The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.


23pBH-6 Collisionless Weibel shock experiments using large-scale laser systems

Meeting Abstracts of the Physical Society of Japan The Physical Society of Japan 70 (2015)

Y Sakawa, C Plechaty, B Remington, MC Levy, MA Barrios, SV Weber, J Meinecke, AB Zylstra, CK Li, H Rinderknecht, A Zylstra, H-S Park, R Petrasso, NL Kugland, RP Drake, C Kuranz, DH Froula, S Regan, N Woolsey, M Koening, T Morita, Y Kuramitsu, G Gregori, T Sano, T Moritaka, TN Kato, H Takabe, A Spitkovsky, C Huntington, JS Ross, DD Ryutov, S Pollaine, F Fiuza


Nanosecond Imaging of Shock- and Jet-Like Features

IEEE TRANSACTIONS ON PLASMA SCIENCE 42 (2014) 2496-2497

ER Tubman, R Crowston, R Alraddadi, HW Doyle, J Meinecke, JE Cross, R Bolis, D Lamb, P Tzeferacos, D Doria, B Reville, H Ahmed, M Borghesi, G Gregori, NC Woolsey


Nanosecond Imaging of Shock- and Jet-Like Features

IEEE Transactions on Plasma Science (2014)

ER Tubman, R Crowston, R Alraddadi, HW Doyle, J Meinecke, JE Cross, R Bolis, D Lamb, P Tzeferacos, D Doria, B Reville, H Ahmed, M Borghesi, G Gregori, NC Woolsey

The production of shock- and collimated jet-like features is recorded from the self-emission of a plasma using a 16- frame camera, which can show the progression of the interaction over short (100s ns) durations. A cluster of laser beams, with intensity 10¹⁵$ W/cm², was focused onto a planar aluminum foil to produce a plasma that expanded into 0.7 mbar of argon gas. The acquisition of 16 ultrafast images on a single shot allows prompt spatial and temporal characterization of the plasma and enables the velocity of the jet- and shock-like features to be calculated.


Turbulent amplification of magnetic fields in laboratory laser-produced shock waves

NATURE PHYSICS 10 (2014) 520-524

J Meinecke, HW Doyle, F Miniati, AR Bell, R Bingham, R Crowston, RP Drake, M Fatenejad, M Koenig, Y Kuramitsu, CC Kuranz, DQ Lamb, D Lee, MJ MacDonald, CD Murphy, H-S Park, A Pelka, A Ravasio, Y Sakawa, AA Schekochihin, A Scopatz, P Tzeferacos, WC Wan, NC Woolsey, R Yurchak, B Reville, G Gregori


Modeling HEDLA magnetic field generation experiments on laser facilities

HIGH ENERGY DENSITY PHYSICS 9 (2013) 172-177

M Fatenejad, AR Bell, A Benuzzi-Mounaix, R Crowston, RP Drake, N Flocke, G Gregori, M Koenig, C Krauland, D Lamb, D Lee, JR Marques, J Meinecke, F Miniati, CD Murphy, H-S Park, A Pelka, A Ravasio, B Remington, B Reville, A Scopatz, P Tzeferacos, K Weide, N Woolsey, R Young, R Yurchak


Simulation of laser-driven, ablated plasma flows in collisionless shock experiments on OMEGA and the NIF

HIGH ENERGY DENSITY PHYSICS 9 (2013) 192-197

MJ Grosskopf, RP Drake, CC Kuranz, EM Rutter, JS Ross, NL Kugland, C Plechaty, BA Remington, A Spitkovsky, L Gargate, G Gregori, A Bell, CD Murphy, J Meinecke, B Reville, Y Sakawa, Y Kuramitsu, H Takabe, DH Froula, G Fiksel, F Miniati, M Koenig, A Ravasio, E Liang, W Fu, N Woolsey, H-S Park


FLASH hydrodynamic simulations of experiments to explore the generation of cosmological magnetic fields

HIGH ENERGY DENSITY PHYSICS 9 (2013) 75-81

A Scopatz, M Fatenejad, N Flocke, G Gregori, M Koenig, DQ Lamb, D Lee, J Meinecke, A Ravasio, P Tzeferacos, K Weide, R Yurchak


Visualizing electromagnetic fields in laser-produced counter-streaming plasma experiments for collisionless shock laboratory astrophysics

PHYSICS OF PLASMAS 20 (2013) ARTN 056313

NL Kugland, JS Ross, P-Y Chang, RP Drake, G Fiksel, DH Froula, SH Glenzer, G Gregori, M Grosskopf, C Huntington, M Koenig, Y Kuramitsu, C Kuranz, MC Levy, E Liang, D Martinez, J Meinecke, F Miniati, T Morita, A Pelka, C Plechaty, R Presura, A Ravasio, BA Remington, B Reville, DD Ryutov, Y Sakawa, A Spitkovsky, H Takabe, H-S Park


Collisionless shock formation with high-power laser and measurement of electromagnetic field

Meeting Abstracts of the Physical Society of Japan The Physical Society of Japan 68 (2013)

T Morita, C Kuranz, MC Levy, D Martinez, J Meinecke, F Miniati, CD Murphy, A Pelka, C Plechaty, R Presura, N Quiros, N Kugland, BA Remington, B Reville, JS Ross, DD Ryutov, Y Sakawa, Y Yamaura, L Steele, H Takabe, H-S Park, W Wan, R Crowston, RP Drake, G Gregori, C Huntington, T Ishikawa, M Koenig

Pages