Publications by John Lynch


Establishing nationally representative benchmarks of farm-gate nitrogen and phosphorus balances and use efficiencies on Irish farms to encourage improvements

Science of the Total Environment 720 (2020)

IA Thomas, C Buckley, E Kelly, E Dillon, J Lynch, B Moran, T Hennessy, PNC Murphy

© 2020 Elsevier B.V. Agriculture faces considerable challenges of achieving more sustainable production that minimises nitrogen (N) and phosphorus (P) losses and meets international obligations for water quality and greenhouse gas emissions. This must involve reducing nutrient balance (NB) surpluses and increasing nutrient use efficiencies (NUEs), which could also improve farm profitability (a win-win). To set targets and motivate improvements in Ireland, nationally representative benchmarks were established for different farm categories (sector, soil group and production intensity). Annual farm-gate NBs (kg ha−1) and NUEs (%) for N and P were calculated for 1446 nationally representative farms from 2008 to 2015 using import and export data collected by the Teagasc National Farm Survey (part of the EU Farm Accountancy Data Network). Benchmarks for each category were established using quantile regression analysis and percentile rankings to identify farms with the lowest NB surplus per production intensity and highest gross margins (€ ha−1). Within all categories, large ranges in NBs and NUEs between benchmark farms and poorer performers show considerable room for nutrient management improvements. Results show that as agriculture intensifies, nutrient surpluses, use efficiencies and gross margins increase, but benchmark farms minimise surpluses to relatively low levels (i.e. are more sustainable). This is due to, per ha, lower fertiliser and feed imports, greater exports of agricultural products, and for dairy, sheep and suckler cattle, relatively high stocking rates. For the ambitious scenario of all non-benchmark farms reaching the optimal benchmark zone, moderate reductions in farm nutrient surpluses were found with great improvements in profitability, leading to a 31% and 9% decrease in N and P surplus nationally, predominantly from dairy and non-suckler cattle. The study also identifies excessive surpluses for each level of production intensity, which could be used by policy in setting upper limits to improve sustainability.


Show full publication list