Publications by Juan Jin

Peptide Assembly Directed and Quantified Using Megadalton DNA Nanostructures.

ACS nano (2019)

J Jin, EG Baker, CW Wood, J Bath, DN Woolfson, AJ Turberfield

In nature, co-assembly of polypeptides, nucleic acids and polysaccharides is used to create functional supramolecular structures. Here we show that DNA nanostructures can be used to template interactions between peptides, and to enable the quantification of multivalent interactions that would otherwise not be observable. Our functional building blocks are DNA-peptide hybrids comprising de novo designed dimeric coiled-coil peptides covalently linked to oligonucleotide tags. These hybrids are incorporated in megadalton DNA origami nanostructures and direct nanostructure association through peptide-peptide interactions. Free and bound nanostructures can be counted directly from electron micrographs allowing estimation of the dissociation constants of the peptides linking them. Results for a single peptide-peptide interaction are consistent with measured solution-phase free energies; DNA nanostructures displaying multiple peptides allow the effects of polyvalency to be probed. This use of DNA nanostructures as identifiers allows the binding strengths of homo- and hetero-dimeric peptide combinations to be measured in a single experiment and gives access to dissociation constants that are too low to be quantified by conventional techniques. The work also demonstrates that hybrid biomolecules can be programmed to achieve spatial organization of complex synthetic biomolecular assemblies.

Show full publication list