Publications by Thorsten Hesjedal


Rare Earth Doping of Topological Insulators: A Brief Review of Thin Film and Heterostructure Systems (Phys. Status Solidi A 8∕2019)

Wiley (2019)

THORSTEN Hesjedal


Antidamping torques from simultaneous resonances in ferromagnet-topological insulator-ferromagnet heterostructures

Journal of Magnetism and Magnetic Materials Elsevier 473 (2018) 470-476

AA Baker, AI Figueroa, T Hesjedal, G Van Der Laan

We studied the magnetodynamics of ferromagnetic films coupling across a topological insulator (TI) Bi2Se3 layer using ferromagnetic resonance (FMR). TIs have attracted much attention across the physics community as they hold the potential for dissipationless carrier transport, extremely high spin-orbit torques, and are host to novel quantum effects. To investigate the coupling between the ferromagnetic (FM) layers, vector network analyzer (VNA)-FMR measurements of the resonance linewidth were performed as a function of bias field angle. By bringing the resonances of the two FM layers into close proximity, it was possible to observe antidamping torques that lead to a narrowing of linewidth, a characteristic of spin pumping. The element- and hence layer-specific technique of x-ray detected ferromagnetic resonance (XFMR) was used to circumvent the difficulty of obtaining accurate fits to the two overlapping resonances in close proximity. Our results confirm that the interaction across the TI is a dynamic exchange mediated by spin pumping, as opposed to a self-coupling of the surface state or similar, more unconventional mechanisms.


Cr2Te3 thin films for integration in magnetic topological insulator heterostructures

Scientific Reports Nature 9 (2019) 10793

DM Burn, L Duffy, R Fujita, S Zhang, AI Figueroa, J Herrero-Martin, G Van Der Laan, T Hesjedal

Chromium telluride compounds are promising ferromagnets for proximity coupling to magnetic topological insulators (MTIs) of the Cr-doped (Bi,Sb)2(Se,Te)3 class of materials as they share the same elements, thus simplifying thin film growth, as well as due to their compatible crystal structure. Recently, it has been demonstrated that high quality (001)-oriented Cr2Te3 thin films with perpendicular magnetic anisotropy can be grown on c-plane sapphire substrate. Here, we present a magnetic, and soft xray absorption spectroscopy study of the chemical and magnetic properties of Cr2Te3 thin films. X-ray magnetic circular dichroism (XMCD) measured at the Cr L2,3 edges gives information about the local electronic and magnetic structure of the Cr ions. We further demonstrate the overgrowth of Cr2Te3(001) thin films by high-quality Crdoped Sb2Te3 films. The magnetic properties of the layers have been characterized and our results provide a starting point for refining the physical models of the complex magnetic ordering in Cr2Te3 thin films, and their integration into advanced MTI heterostructures for quantum device applications.


Rare earth doping of topological insulators: A brief review of thin film and heterostructure systems

physica status solidi (a) Wiley 216 (2019) 1800726-

T Hesjedal

Magnetic topological insulators (MTIs) are a novel materials class in which a topologically nontrivial electronic band structure coexists with long‐range ferromagnetic order. The ferromagnetic ground state can break time‐reversal symmetry, opening a gap in the topological surface states whose size is dependent on the magnitude of the magnetic moment. Doping with rare earth ions is one way to introduce higher magnetic moments into a material, however, in Bi2Te3 bulk crystals, the solubility limit is only a few percent. Using molecular beam epitaxy for the growth of doped (Sb,Bi)2(Se,Te)3 TI thin films, high doping concentrations can be achieved while preserving their high crystalline quality. The growth, structural, electronic, and magnetic properties of Dy, Ho, and Gd doped TI thin films will be reviewed. Indeed, high magnetic moments can be introduced into the TIs, which are, however, not ferromagnetically ordered. By making use of interfacial effects, magnetic long‐range order in Dy doped Bi2Te3, proximity‐coupled to the MTI Cr:Sb2Te3, has been achieved. Clearly, engineered MTI heterostructures offer new possibilities that combine the advantageous properties of different layers, and thus provide an ideal materials platform enabling the observation new quantum effects at higher temperatures.


Skyrmions in anisotropic magnetic fields: strain and defect driven dynamics

MRS Advances Cambridge University Press 4 (2019) 643-650

R Brearton, S Zhang, MW Olszewski, G Van Der Laan, CJO Reichardt, C Reichardt, Eskildsen, T Hesjedal

Magnetic skyrmions are particle-like, topologically protected magnetization entities that are promising candidates for information carriers in racetrack-memory schemes. The transport of skyrmions in a shift-register-like fashion is crucial for their embodiment in practical devices. Recently, we demonstrated experimentally that chiral skyrmions in Cu2OSeO3 can be effectively manipulated by a magnetic field gradient, leading to a collective rotation of the skyrmion lattice with well-defined dynamics in a radial field gradient. Here, we employ a skyrmion particle model to numerically study the effects of resultant shear forces on the structure of the skyrmion lattice. We demonstrate that anisotropic peak broadening in experimentally observed diffraction patterns can be attributed to extended linear regions in the magnetic field profile. We show that topological (5-7) defects emerge to protect the six-fold symmetry of the lattice under the application of local shear forces, further enhancing the stability of proposed magnetic field driven devices.


The effect of substrate and surface plasmons on symmetry breaking at the substrate interface of the topological insulator Bi2Te3

Scientific Reports Nature Research 9 (2019) 6147

M Wiesner, RH Roberts, J-F Lin, D Akinwande, T Hesjedal, LB Duffy, S Wang, Y Song, J Jenczyk, S Jurga, B Mroz

A pressing challenge in engineering devices with topological insulators (TIs) is that electron transport is dominated by the bulk conductance, and so dissipationless surface states account for only a small fraction of the conductance. Enhancing the surface-to-volume ratio is a common method to enhance the relative contribution of such states. In thin films with reduced thickness, the confinement results in symmetry-breaking and is critical for the experimental observation of topologically protected surface states. We employ micro-Raman and tip-enhanced Raman spectroscopy to examine three different mechanisms of symmetry breaking in Bi2Te3 TI thin films: surface plasmon generation, charge transfer, and application of a periodic strain potential. These mechanisms are facilitated by semiconducting and insulating substrates that modify the electronic and mechanical conditions at the sample surface and alter the long-range interactions between Bi2Te3 and the substrate. We confirm the symmetry breaking in Bi2Te3 via the emergence of the Raman-forbidden ܣଵ௨ ଶ mode. Our results suggest that topological surface states can exist at the Bi2Te3/substrate interface, which is in a good agreement with previous theoretical results predicting the tunability of the vertical location of helical surface states in TI/substrate heterostructures.


Oriented Three-Dimensional Magnetic Biskyrmion in MnNiGa Bulk Crystals

Advanced Materials Wiley (2019)

XY Li, S Zhang, H Li, D Alba Venero, JS White, R Cubitt, QZ Huang, G van der Laan, WH Wang, T Hesjedal, FW Wang


Anatomy of skyrmionic textures in magnetic multilayers

Advanced Materials Wiley 31 (2019) 1807683

S Zhang, M Carpentieri, W Li, G Finocchio, R Tomasello, I Bykova, J Graefe, X Zhang, J Feng, Z Yan, Y Liu, G Yu, T Hesjedal, G Van Der Laan, M Weigand, G Schuetz, Y Guang, J Wei, C Wan, X Han, C Guo, DM Burn, X Wang, H Wei, H Xu

Room temperature magnetic skyrmions in magnetic multilayers are considered as information carriers for future spintronic applications. Currently, a detailed understanding of the skyrmion stabilization mechanisms is still lacking in these systems. To gain more insight, it is first and foremost essential to determine the full real‐space spin configuration. Here, two advanced X‐ray techniques are applied, based on magnetic circular dichroism, to investigate the spin textures of skyrmions in [Ta/CoFeB/MgO] n multilayers. First, by using ptychography, a high‐resolution diffraction imaging technique, the 2D out‐of‐plane spin profile of skyrmions with a spatial resolution of 10 nm is determined. Second, by performing circular dichroism in resonant elastic X‐ray scattering, it is demonstrated that the chirality of the magnetic structure undergoes a depth‐dependent evolution. This suggests that the skyrmion structure is a complex 3D structure rather than an identical planar texture throughout the layer stack. The analyses of the spin textures confirm the theoretical predictions that the dipole–dipole interactions together with the external magnetic field play an important role in stabilizing sub‐100 nm diameter skyrmions and the hybrid structure of the skyrmion domain wall. This combined X‐ray‐based approach opens the door for in‐depth studies of magnetic skyrmion systems, which allows for precise engineering of optimized skyrmion heterostructures.


Oriented 3D magnetic biskyrmions in MnNiGa bulk crystals

Advanced Materials Wiley 31 (2019) 1900264

X Li, S Zhang, H Li, DA Venero, JS White, R Cubitt, Q Huang, J Chen, L He, GVD Laan, W Wang, T Hesjedal, F Wang

A biskyrmion consists of two bound, topologically stable, skyrmion spin textures. These coffee‐bean‐shaped objects are observed in real space in thin plates using Lorentz transmission electron microscopy (LTEM). From LTEM imaging alone, it is not clear whether biskyrmions are surface‐confined objects, or, analogous to skyrmions in noncentrosymmetric helimagnets, 3D tube‐like structures in a bulk sample. Here, the biskyrmion form factor is investigated in single‐ and polycrystalline‐MnNiGa samples using small‐angle neutron scattering. It is found that biskyrmions are not long‐range ordered, not even in single crystals. Surprisingly all of the disordered biskyrmions have their in‐plane symmetry axis aligned along certain directions, governed by the magnetocrystalline anisotropy. This anisotropic nature of biskyrmions may be further exploited to encode information.


Temperature dependence of the ferromagnetic response in CrxSb2-xTe3 topological insulator thin films investigated using terahertz spectroscopy and magneto-transport

Proceedings of SPIE Society of Photo-Optical Instrumentation Engineers 10917 (2019)

VS Kamboj, A Singh, L Jakob, L Duffy, N Idros, SP Senanayak, A Ionescu, HE Beere, CHW Barnes, T Hesjedal, DA Ritchie


Systematic study of ferromagnetism in CrxSb2-xTe3 topological insulator thin films using electrical and optical techniques

Scientific Reports Springer Nature 8 (2018) 17024

A Singh, V Kamboj, J Liu, J Llandro, L Duffy, SP Senanayak, HE Beere, A Ionescu, DA Ritchie, T Hesjedal, CHW Barnes

Ferromagnetic ordering in a topological insulator can break time-reversal symmetry, realizing dissipationless electronic states in the absence of a magnetic field. The control of the magnetic state is of great importance for future device applications. We provide a detailed systematic study of the magnetic state in highly doped CrxSb2−xTe3 thin films using electrical transport, magneto-optic Kerr effect measurements and terahertz time domain spectroscopy, and also report an efficient electric gating of ferromagnetic order using the electrolyte ionic liquid [DEME][TFSI]. Upon increasing the Cr concentration from x = 0.15 to 0.76, the Curie temperature (Tc) was observed to increase by ~5 times to 176 K. In addition, it was possible to modify the magnetic moment by up to 50% with a gate bias variation of just ±3 V, which corresponds to an increase in carrier density by 50%. Further analysis on a sample with x = 0.76 exhibits a clear insulator-metal transition at Tc, indicating the consistency between the electrical and optical measurements. The direct correlation obtained between the carrier density and ferromagnetism - in both electrostatic and chemical doping - using optical and electrical means strongly suggests a carrier-mediated Ruderman-Kittel-Kasuya-Yoshida (RKKY) coupling scenario. Our low-voltage means of manipulating ferromagnetism, and consistency in optical and electrical measurements provides a way to realize exotic quantum states for spintronic and low energy magneto-electronic device applications.


Magnetic X-ray spectroscopy of two-dimensional CrI3 layers

Materials Letters Elsevier 232 (2018) 5-7

A Frisk, LB Duffy, S Zhang, G Van Der Laan, T Hesjedal

The recently confirmed monolayer ferromagnet CrI3 is a frisky example of a two-dimensional ferromagnetic material with great application potential in van der Waals heterostructures. Here we present a soft X-ray absorption spectroscopy study of the magnetic bulk properties of CrI3, giving insight into the magnetic coupling scenario which is relevant for understanding its thickness-dependent magnetic properties. The experimental Cr X-ray magnetic circular dichroism spectra show a good agreement with calculated spectra for a hybridized ground state. In this high-spin Cr ground state the Cr–I bonds show a strongly covalent character. This is responsible for the strong superexchange interaction and increased spin-orbit coupling, resulting in the large magnetic anisotropy of the two-dimensionally layered CrI3 crystal.


Direct observation of twisted surface Skyrmions in bulk crystals

Physical Review Letters American Physical Society 120 (2018) 227202

S Zhang, G van der Laan, WW Wang, A Haghighirad, T Hesjedal

Magnetic skyrmions in noncentrosymmetric helimagnets with Dn symmetry are Bloch-type magnetization swirls with a helicity angle of ±90∘. At the surface of helimagnetic thin films below a critical thickness, a twisted skyrmion state with arbitrary helicity angle has been proposed, however, its direct experimental observation has remained elusive. Here, we show that circularly polarized resonant elastic x-ray scattering is able to unambiguously measure the helicity angle of surface skyrmions, providing direct experimental evidence that a twisted skyrmion surface state also exists in bulk systems. The exact surface helicity angles of twisted skyrmions for both left- and right-handed chiral bulk Cu2OSeO3, in the single as well as in the multidomain skyrmion lattice state, are determined, revealing their detailed internal structure. Our findings suggest that a skyrmion surface reconstruction is a universal phenomenon, stemming from the breaking of translational symmetry at the interface.


Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii-Moriya interaction

New Journal of Physics Institute of Physics 20 (2018) 113015-

D Cortes-Ortuno, M Beg, V Nehruji, L Breth, R Pepper, T Kluyver, G Downing, T Hesjedal, P Hatton, T Lancaster, R Hertel, O Hovorka, H Fabgohr

Understanding the role of the Dzyaloshinskii-Moriya interaction (DMI) for the formation of helimagnetic order, as well as the emergence of skyrmions in magnetic systems that lack inversion symmetry, has found increasing interest due to the significant potential for novel spin based technologies. Candidate materials to host skyrmions include those belonging to the B20 group such as FeGe, known for stabilising Bloch-like skyrmions, interfacial systems such as cobalt multilayers or Pd/Fe bilayers on top of Ir(111), known for stabilising N´eel-like skyrmions, and, recently, alloys with a crystallographic symmetry where anti-skyrmions are stabilised. Micromagnetic simulations have become a standard approach to aid the design and optimisation of spintronic and magnetic nanodevices and are also applied to the modelling of device applications which make use of skyrmions. Several public domain micromagnetic simulation packages such as OOMMF, MuMax3 and Fidimag already offer implementations of different DMI terms. It is therefore highly desirable to propose a so-called micromagnetic standard problem that would allow one to benchmark and test the different software packages in a similar way as is done for ferromagnetic materials without DMI. Here, we provide a sequence of well-defined and increasingly complex computational problems for magnetic materials with DMI. Our test problems include 1D, 2D and 3D domains, spin wave dynamics in the presence of DMI, and validation of the analytical and numerical solutions including uniform magnetisation, edge tilting, spin waves and skyrmion formation. This set of problems can be used by developers and users of new micromagnetic simulation codes for testing and validation and hence establishing scientific credibility.


THz carrier dynamics and magnetotransport study of topological surface states in thin film Bi<inf>2</inf>Se<inf>3</inf>

Proceedings of SPIE - The International Society for Optical Engineering 10531 (2018)

VS Kamboj, A Singh, T Ferrus, HE Beere, LB Duffy, T Hesjedal, CHW Barnes, DA Ritchie

© 2018 SPIE. The surface of a topological insulator harbors exotic topological states, protected against backscattering from disorder by time reversal symmetry. The study of these exotic quantum states not only provides an opportunity to explore fundamental phenomena in condensed matter physics, such as the spin Hall effect, but also lays the foundation for applications from quantum computing to spintronics. Conventional electrical measurements suffer from substantial bulk interference, making it difficult to clearly distinguish topological surface states from bulk states. Employing terahertz time-domain spectroscopy, we study the temperature-dependent optical behavior of a 23-quintuple-thick film of bismuth selenide (Bi2Se3) allowing for the deconvolution of the surface state response from the bulk. Our measurement of carrier dynamics give an optical mobility exceeding 2100 cm2/V•s at 4 K, indicative of a surface-dominated response, and a scattering lifetime of ∼0.18 ps and a carrier density of 6×1012cm-2at 4 K for the Bi2Se3film. The sample was further processed into a Hall bar device using two different etching techniques, a wet chemical etching and Ar+ion milling, which resulting in a reduced Hall mobility. Even so, the magneto-conductance transport reveals weak antilocalization behavior in our Bi2Se3 sample, consistent with the presence of a single topological surface state mode.


Electronic structure and enhanced charge-density wave order of monolayer VSe2

Nano Letters American Chemical Society 18 (2018) 4493-4499

J Feng, D Biswas, A Rajan, F Mazzola, OJ Clark, K Underwood, I Marckovic, M McLaren, A Hunter, DM Burn, L Duffy, S Barua, G Balakrishnan, F Bertran, P LeFevre, T Kim, G van der Laan, T Hesjedal, P Wahl, PDC King

How the interacting electronic states and phases of layered transition-metal dichalcogenides evolve when thinned to the single-layer limit is a key open question in the study of two-dimensional materials. Here, we use angle-resolved photoemission to investigate the electronic structure of monolayer VSe2 grown on bilayer graphene/SiC. While the global electronic structure is similar to that of bulk VSe2, we show that, for the monolayer, pronounced energy gaps develop over the entire Fermi surface with decreasing temperature below Tc = 140 ± 5 K, concomitant with the emergence of charge-order superstructures evident in low-energy electron diffraction. These observations point to a charge-density wave instability in the monolayer that is strongly enhanced over that of the bulk. Moreover, our measurements of both the electronic structure and of X-ray magnetic circular dichroism reveal no signatures of a ferromagnetic ordering, in contrast to the results of a recent experimental study as well as expectations from density functional theory. Our study thus points to a delicate balance that can be realized between competing interacting states and phases in monolayer transition-metal dichalcogenides.


Microscopic effects of Dy doping in the topological insulator Bi2Te3

Physical Review B American Physical Society 97 (2018) 174427

LB Duffy, N-J Steinke, JA Krieger, AI Figueroa, K Kummer, T Lancaster, Giblin, FL Pratt, SJ Blundell, T Prokscha, A Suter, S Langridge, VN Strocov, Z Salman, G van der Laan, T Hesjedal

Magnetic doping with transition metal ions is the most widely used approach to break time-reversal symmetry in a topological insulator (TI)—a prerequisite for unlocking the TI’s exotic potential. Recently, we reported the doping of Bi2Te3 thin films with rare-earth ions, which, owing to their large magnetic moments, promise commensurately large magnetic gap openings in the topological surface states. However, only when doping with Dy has a sizable gap been observed in angle-resolved photoemission spectroscopy, which persists up to room temperature. Although disorder alone could be ruled out as a cause of the topological phase transition, a fundamental understanding of the magnetic and electronic properties of Dy-doped Bi2Te3 remained elusive. Here, we present an x-ray magnetic circular dichroism, polarized neutron reflectometry, muon-spin rotation, and resonant photoemission study of the microscopic magnetic and electronic properties. We find that the films are not simply paramagnetic but that instead the observed behavior can be well explained by the assumption of slowly fluctuating, inhomogeneous, magnetic patches with increasing volume fraction as the temperature decreases. At liquid helium temperatures, a large effective magnetization can be easily introduced by the application of moderate magnetic fields, implying that this material is very suitable for proximity coupling to an underlying ferromagnetic insulator or in a heterostructure with transition-metal-doped layers. However, the introduction of some charge carriers by the Dy dopants cannot be excluded at least in these highly doped samples. Nevertheless, we find that the magnetic order is not mediated via the conduction channel in these samples and therefore magnetic order and carrier concentration are expected to be independently controllable. This is not generally the case for transition-metal-doped topological insulators, and Dy doping should thus allow for improved TI quantum devices.


Reciprocal space tomography of 3D skyrmion lattice order in a chiral magnet

Proceedings of the National Academy of Sciences National Academy of Sciences 115 (2018) 6386-6391

S Zhang, G van der Laan, J Mueller, L Heinen, M Garst, A Bauer, H Berger, C Pfleiderer, T Hesjedal

It is commonly assumed that surfaces modify the properties of stable materials within the top few atomic layers of a bulk specimen only. Exploiting the polarization dependence of resonant elastic X-ray scattering to go beyond conventional diffraction and imaging techniques, we have determined the depth dependence of the full 3D spin structure of skyrmions—that is, topologically nontrivial whirls of the magnetization—below the surface of a bulk sample of Cu2OSeO3. We found that the skyrmions change exponentially from pure Néel- to pure Bloch-twisting over a distance of several hundred nanometers between the surface and the bulk, respectively. Though qualitatively consistent with theory, the strength of the Néel-twisting at the surface and the length scale of the variation observed experimentally exceed material-specific modeling substantially. In view of the exceptionally complete quantitative theoretical account of the magnetic rigidities and associated static and dynamic properties of skyrmions in Cu2OSeO3 and related materials, we conclude that subtle changes of the materials properties must exist at distances up to several hundred atomic layers into the bulk, which originate in the presence of the surface. This has far-reaching implications for the creation of skyrmions in surface-dominated systems and identifies, more generally, surface-induced gradual variations deep within a bulk material and their impact on tailored functionalities as an unchartered scientific territory.


Manipulation of skyrmion motion by magnetic field gradients

Nature Communications Springer Nature 9 (2018) 2115

SL Zhang, WW Wang, DM Burn, H Peng, H Berger, A Bauer, C Pfleiderer, G van der Laan, T Hesjedal

Magnetic skyrmions are particle-like, topologically protected magnetisation entities that are promising candidates as information carriers in racetrack memory. The transport of skyrmions in a shift-register-like fashion is crucial for their embodiment in practical devices. Here, we demonstrate that chiral skyrmions in Cu2OSeO3 can be effectively manipulated under the influence of a magnetic field gradient. In a radial field gradient, skyrmions were found to rotate collectively, following a given velocity–radius relationship. As a result of this relationship, and in competition with the elastic properties of the skyrmion lattice, the rotating ensemble disintegrates into a shell-like structure of discrete circular racetracks. Upon reversing the field direction, the rotation sense reverses. Field gradients therefore offer an effective handle for the fine control of skyrmion motion, which is inherently driven by magnon currents. In this scheme, no local electric currents are needed, thus presenting a different approach to shift-register-type operations based on spin transfer torque.


Crossover from lattice to plasmonic polarons of a spin-polarised electron gas in ferromagnetic EuO

Nature Communications Springer Nature 9 (2018) 2305

JM Riley, F Caruso, C Verdi, LB Duffy, L Bawden, K Volckaert, G van der Laan, T Hesjedal, M Hoesch, F Giustino, PDC King

Strong many-body interactions in solids yield a host of fascinating and potentially useful physical properties. Here, from angle-resolved photoemission experiments and ab initio many-body calculations, we demonstrate how a strong coupling of conduction electrons with collective plasmon excitations of their own Fermi sea leads to the formation of plasmonic polarons in the doped ferromagnetic semiconductor EuO. We observe how these exhibit a significant tunability with charge carrier doping, leading to a polaronic liquid that is qualitatively distinct from its more conventional lattice-dominated analogue. Our study thus suggests powerful opportunities for tailoring quantum many-body interactions in solids via dilute charge carrier doping.

Pages