Publications by Thorsten Hesjedal


Mode-resolved detection of magnetization dynamics using x-ray diffractive ferromagnetic resonance

Nano Letters American Chemical Society (2019)

D Burn, S Zhang, Y Chai, K Zhai, Y Sun, G Van Der Laan, T Hesjedal

Collective spin excitations of ordered magnetic structures o er great potential for the development of novel spintronic devices. The present approach is to rely on micromagnetic models to explain the origins of dynamic modes observed by ferromagnetic resonance (FMR) studies, since experimental tools to directly reveal the origins of the complex dynamic behavior are lacking. Here we demonstrate a new approach which combines resonant magnetic x-ray diffraction with FMR, thereby allowing for a reconstruction of the real-space spin dynamics of the system. This new diffractive FMR (DFMR) technique builds on x-ray detected FMR (XFMR) that allows for element-selective dynamic studies, giving unique access to specific wave components of static and dynamic coupling in magnetic heterostructures. In combination with diffraction, FMR is elevated to the level of a modal spectroscopy technique, potentially opening new pathways for the development of spintronic devices.


Robust perpendicular skyrmions and their surface-confinement

Nano Letters American Chemical Society (2020)

S Zhang, D Burn, N Jaouen, J-Y Chauleau, A Haghighirad, Y Wang, W Wang, G Van Der Laan, T Hesjedal

Magnetic skyrmions are two-dimensional magnetization swirls that stack in the form of tubes in the third dimension, and which are proposed as prospective information carriers for nonvolatile memory devices due to their unique topological properties. From resonant elastic x-ray scattering measurements on Cu2OSeO3 with an in-plane magnetic field we find that a state of perpendicularly ordered skyrmions forms - in stark contrast to the well-studied bulk state. The surface state is stable over a wide temperature range, unlike the bulk state in out-of-plane fields which is confined in a narrow region of the temperature-field phase diagram. In contrast to ordinary skyrmions found in the bulk, the surface state skyrmions result from the presence of magnetic interactions unique to the surface which stabilize them against external perturbations. The surface-guiding makes the robust state particular interesting for racetrack-like devices, ultimately allowing for much higher storage densities due to the smaller lateral footprint of the perpendicular skyrmions.


Magnetic profile of proximity-coupled (Dy,Bi)2Te3/(Cr,Sb)2Te3 topological insulator heterostructures

Physical Review B: Condensed matter and materials physics American Physical Society 100 (2019) 054402

L Duffy, NJ Steinke, DB Burn, A Frisk, L Lari, B Kuerbanjiang, VK Lazarov, S Langridge, G Van Der Laan, T Hesjedal

<p>Magnetic topological insulators (TIs) are an ideal playground for the study of novel quantum phenomena building on time-reversal symmetry broken topological surface states. By combining different magnetic TIs in a heterostructure, their magnetic and electronic properties can be precisely tuned. Recently, we have combined high-moment Dy:Bi<sub>2</sub>Te<sub>3</sub>with high transition temperature Cr:Sb<sub>2</sub>Te<sub>3</sub> in a superlattice, and found, using x-ray magnetic circular dichroism (XMCD), that long-range magnetic order can be introduced in the Dy:Bi<sub>2</sub>Te<sub>3</sub> layers. Accompanying first-principles calculations indicated that the origin of the long-range magnetic order is a strong antiferromagnetic coupling between Dy and Cr magnetic moments at the interface extending over several layers. However, based on XMCD alone, which is either averaging over the entire thin film stack or is surface sensitive, this coupling scenario could not be fully confirmed. Here we use polarized neutron reflectometry (PNR), which is ideally suited for the detailed study of superlattices, to retrieve the magnetization in a layer- and interface-resolved way. We find that the magnetization is, in contrast to similar recent studies, homogeneous throughout the individual layers, with no apparent interfacial effects. This finding demonstrates that heterostructure engineering is a powerful way of controlling the magnetic properties of entire layers, with the effects of coupling reaching beyond the interface region.</p>


Rare Earth Doping of Topological Insulators: A Brief Review of Thin Film and Heterostructure Systems (Phys. Status Solidi A 8∕2019)

Wiley (2019)

THORSTEN Hesjedal


A low-temperature Kerr effect microscope for the simultaneous magneto-optic and magneto-transport study of magnetic topological insulators

Measurement Science and Technology IOP Publishing (2019)

J Liu, A Singh, J Llandro, L Duffy, MJ Applegate, T Hesjedal, CHW Barnes

Magneto-optical Kerr effect (MOKE) microscopy is a surface-sensitive probe of magnetisation with micron-sized lateral resolution. Here, we present a low-temperature, focused polar MOKE microscope for the simultaneous magnetooptical and magneto-transport measurements, which has a temperature range of 1.6-300 K and is equipped with a magnet capable of delivering a field of up to 9 T. In this microscope, all optical components are integrated in a free-standing probe, allowing for the straightforward incorporation into many non-optical cryostat systems. Two-dimensional magnetisation scans on patterned ferromagnetic [CoFeB/Pt]n films demonstrate a magnetisation sensitivity of 10 µrad (Kerr angle) and a spatial resolution of 2.2 µm. The combination of optical and electrical measurements provides complementary temperature-dependent information, as demonstrated by the study of magnetic topological insulator thin films with out-of-plane magnetic anisotropy. Using this complementary approach, we study the effects of a secondary phase in Cr and V co-doped Sb2Te3 thin films, which show a combination of weak antilocalization and anisotropic magnetoresistance effects above 70 K. Our results highlight the virtue of MOKE and electrical transport to optimise exotic topological magnetic materials, paving the way for energy-efficient spintronic devices.


Helical magnetic ordering in thin FeGe membranes

PHYSICAL REVIEW B 100 (2019) ARTN 184403

DM Burn, SL Zhang, S Wang, HF Du, G van der Laan, T Hesjedal


Antidamping torques from simultaneous resonances in ferromagnet-topological insulator-ferromagnet heterostructures

Journal of Magnetism and Magnetic Materials Elsevier 473 (2018) 470-476

AA Baker, AI Figueroa, T Hesjedal, G Van Der Laan

We studied the magnetodynamics of ferromagnetic films coupling across a topological insulator (TI) Bi2Se3 layer using ferromagnetic resonance (FMR). TIs have attracted much attention across the physics community as they hold the potential for dissipationless carrier transport, extremely high spin-orbit torques, and are host to novel quantum effects. To investigate the coupling between the ferromagnetic (FM) layers, vector network analyzer (VNA)-FMR measurements of the resonance linewidth were performed as a function of bias field angle. By bringing the resonances of the two FM layers into close proximity, it was possible to observe antidamping torques that lead to a narrowing of linewidth, a characteristic of spin pumping. The element- and hence layer-specific technique of x-ray detected ferromagnetic resonance (XFMR) was used to circumvent the difficulty of obtaining accurate fits to the two overlapping resonances in close proximity. Our results confirm that the interaction across the TI is a dynamic exchange mediated by spin pumping, as opposed to a self-coupling of the surface state or similar, more unconventional mechanisms.


Cr2Te3 thin films for integration in magnetic topological insulator heterostructures

Scientific Reports Nature 9 (2019) 10793

DM Burn, L Duffy, R Fujita, S Zhang, AI Figueroa, J Herrero-Martin, G Van Der Laan, T Hesjedal

Chromium telluride compounds are promising ferromagnets for proximity coupling to magnetic topological insulators (MTIs) of the Cr-doped (Bi,Sb)2(Se,Te)3 class of materials as they share the same elements, thus simplifying thin film growth, as well as due to their compatible crystal structure. Recently, it has been demonstrated that high quality (001)-oriented Cr2Te3 thin films with perpendicular magnetic anisotropy can be grown on c-plane sapphire substrate. Here, we present a magnetic, and soft xray absorption spectroscopy study of the chemical and magnetic properties of Cr2Te3 thin films. X-ray magnetic circular dichroism (XMCD) measured at the Cr L2,3 edges gives information about the local electronic and magnetic structure of the Cr ions. We further demonstrate the overgrowth of Cr2Te3(001) thin films by high-quality Crdoped Sb2Te3 films. The magnetic properties of the layers have been characterized and our results provide a starting point for refining the physical models of the complex magnetic ordering in Cr2Te3 thin films, and their integration into advanced MTI heterostructures for quantum device applications.


Rare earth doping of topological insulators: A brief review of thin film and heterostructure systems

physica status solidi (a) Wiley 216 (2019) 1800726-

T Hesjedal

Magnetic topological insulators (MTIs) are a novel materials class in which a topologically nontrivial electronic band structure coexists with long‐range ferromagnetic order. The ferromagnetic ground state can break time‐reversal symmetry, opening a gap in the topological surface states whose size is dependent on the magnitude of the magnetic moment. Doping with rare earth ions is one way to introduce higher magnetic moments into a material, however, in Bi2Te3 bulk crystals, the solubility limit is only a few percent. Using molecular beam epitaxy for the growth of doped (Sb,Bi)2(Se,Te)3 TI thin films, high doping concentrations can be achieved while preserving their high crystalline quality. The growth, structural, electronic, and magnetic properties of Dy, Ho, and Gd doped TI thin films will be reviewed. Indeed, high magnetic moments can be introduced into the TIs, which are, however, not ferromagnetically ordered. By making use of interfacial effects, magnetic long‐range order in Dy doped Bi2Te3, proximity‐coupled to the MTI Cr:Sb2Te3, has been achieved. Clearly, engineered MTI heterostructures offer new possibilities that combine the advantageous properties of different layers, and thus provide an ideal materials platform enabling the observation new quantum effects at higher temperatures.


Skyrmions in anisotropic magnetic fields: strain and defect driven dynamics

MRS Advances Cambridge University Press 4 (2019) 643-650

R Brearton, MW Olszewski, S Zhang, C Reichardt, CJO Reichardt, G Van Der Laan, T Hesjedal

Magnetic skyrmions are particle-like, topologically protected magnetization entities that are promising candidates for information carriers in racetrack-memory schemes. The transport of skyrmions in a shift-register-like fashion is crucial for their embodiment in practical devices. Recently, we demonstrated experimentally that chiral skyrmions in Cu2OSeO3 can be effectively manipulated by a magnetic field gradient, leading to a collective rotation of the skyrmion lattice with well-defined dynamics in a radial field gradient. Here, we employ a skyrmion particle model to numerically study the effects of resultant shear forces on the structure of the skyrmion lattice. We demonstrate that anisotropic peak broadening in experimentally observed diffraction patterns can be attributed to extended linear regions in the magnetic field profile. We show that topological (5-7) defects emerge to protect the six-fold symmetry of the lattice under the application of local shear forces, further enhancing the stability of proposed magnetic field driven devices.


The effect of substrate and surface plasmons on symmetry breaking at the substrate interface of the topological insulator Bi2Te3

Scientific Reports Nature Research 9 (2019) 6147

RH Roberts, M Wiesner, T Hesjedal, D Akinwande, J-F Lin, LB Duffy, S Wang, J Jenczyk, S Jurga, Y Song, B Mroz

A pressing challenge in engineering devices with topological insulators (TIs) is that electron transport is dominated by the bulk conductance, and so dissipationless surface states account for only a small fraction of the conductance. Enhancing the surface-to-volume ratio is a common method to enhance the relative contribution of such states. In thin films with reduced thickness, the confinement results in symmetry-breaking and is critical for the experimental observation of topologically protected surface states. We employ micro-Raman and tip-enhanced Raman spectroscopy to examine three different mechanisms of symmetry breaking in Bi2Te3 TI thin films: surface plasmon generation, charge transfer, and application of a periodic strain potential. These mechanisms are facilitated by semiconducting and insulating substrates that modify the electronic and mechanical conditions at the sample surface and alter the long-range interactions between Bi2Te3 and the substrate. We confirm the symmetry breaking in Bi2Te3 via the emergence of the Raman-forbidden ܣଵ௨ ଶ mode. Our results suggest that topological surface states can exist at the Bi2Te3/substrate interface, which is in a good agreement with previous theoretical results predicting the tunability of the vertical location of helical surface states in TI/substrate heterostructures.


Oriented Three-Dimensional Magnetic Biskyrmion in MnNiGa Bulk Crystals

Advanced Materials Wiley (2019)

XY Li, S Zhang, H Li, D Alba Venero, JS White, R Cubitt, QZ Huang, G van der Laan, T Hesjedal, WH Wang, FW Wang


Anatomy of skyrmionic textures in magnetic multilayers

Advanced Materials Wiley 31 (2019) 1807683

W Li, I Bykova, S Zhang, G Yu, R Tomasello, M Carpentieri, Y Liu, Y Guang, J Graefe, M Weigand, DM Burn, G Van Der Laan, T Hesjedal, Z Yan, J Feng, C Wan, J Wei, X Wang, X Zhang, H Xu, C Guo, H Wei, G Finocchio, X Han, G Schuetz

Room temperature magnetic skyrmions in magnetic multilayers are considered as information carriers for future spintronic applications. Currently, a detailed understanding of the skyrmion stabilization mechanisms is still lacking in these systems. To gain more insight, it is first and foremost essential to determine the full real‐space spin configuration. Here, two advanced X‐ray techniques are applied, based on magnetic circular dichroism, to investigate the spin textures of skyrmions in [Ta/CoFeB/MgO] n multilayers. First, by using ptychography, a high‐resolution diffraction imaging technique, the 2D out‐of‐plane spin profile of skyrmions with a spatial resolution of 10 nm is determined. Second, by performing circular dichroism in resonant elastic X‐ray scattering, it is demonstrated that the chirality of the magnetic structure undergoes a depth‐dependent evolution. This suggests that the skyrmion structure is a complex 3D structure rather than an identical planar texture throughout the layer stack. The analyses of the spin textures confirm the theoretical predictions that the dipole–dipole interactions together with the external magnetic field play an important role in stabilizing sub‐100 nm diameter skyrmions and the hybrid structure of the skyrmion domain wall. This combined X‐ray‐based approach opens the door for in‐depth studies of magnetic skyrmion systems, which allows for precise engineering of optimized skyrmion heterostructures.


Oriented 3D magnetic biskyrmions in MnNiGa bulk crystals

Advanced Materials Wiley 31 (2019) 1900264

X Li, S Zhang, H Li, DA Venero, JS White, R Cubitt, Q Huang, W Wang, T Hesjedal, F Wang, J Chen, L He, GVD Laan

A biskyrmion consists of two bound, topologically stable, skyrmion spin textures. These coffee‐bean‐shaped objects are observed in real space in thin plates using Lorentz transmission electron microscopy (LTEM). From LTEM imaging alone, it is not clear whether biskyrmions are surface‐confined objects, or, analogous to skyrmions in noncentrosymmetric helimagnets, 3D tube‐like structures in a bulk sample. Here, the biskyrmion form factor is investigated in single‐ and polycrystalline‐MnNiGa samples using small‐angle neutron scattering. It is found that biskyrmions are not long‐range ordered, not even in single crystals. Surprisingly all of the disordered biskyrmions have their in‐plane symmetry axis aligned along certain directions, governed by the magnetocrystalline anisotropy. This anisotropic nature of biskyrmions may be further exploited to encode information.


Temperature dependence of the ferromagnetic response in CrxSb2-xTe3 topological insulator thin films investigated using terahertz spectroscopy and magneto-transport

Proceedings of SPIE Society of Photo-Optical Instrumentation Engineers 10917 (2019)

VS Kamboj, A Singh, L Jakob, L Duffy, SP Senanayak, N Idros, A Ionescu, HE Beere, T Hesjedal, CHW Barnes, DA Ritchie


Tailoring the topological surface state in ultrathin alpha -Sn(111) films

Physical Review B: Condensed Matter and Materials Physics American Physical Society (2019)

VA Rogalev, F Adler, F Reis, M Bauernfeind, J Erhardt, L Dudy, LB Duffy, T Hesjedal, M Hoesch, J Schaefer, G Bihlmayer, R Claessen

We report on the electronic structure of α-Sn films in the low thickness regime grown on InSb(111)A. High-resolution angle-resolved photoemission (ARPES), enhanced at low photon energies, allows for the direct observation of the linearly dispersing 2D topological surface states (TSSs) that exist between the second valence band and the conduction band. The Dirac point of this TSS was found to be 200meV below the Fermi level in 10-nm-thick films, which enables the observation of the hybridization gap opening at the Dirac point of the TSS for thinner films. The cross-over to a quasi-2D electronic structure is accompanied by a full gap opening at the Brillouin zone center, in agreement with our density functional theory calculations. We further identify the thickness regime of α-Sn films where the hybridization gap in TSS coexists with the topologically non-trivial electronic structure which must result in a presence of 1D helical edge states.


Expanding the Lorentz Concept in magnetism

New Journal of Physics IOP Publishing 21 (2019) 073063

G Van Der Laan, GJ Bowden, T Hesjedal, RJ Hicken

In 1878, the Dutch physicist Hendrik Antoon Lorentz first addressed the calculation of the local electric field at an atomic site in a ferroelectric material, generated by all the other electric dipoles within the sample. This calculation, which applies equally well to ferromagnets, is taught in Universities around the World. Here we demonstrate that the Lorentz concept can be used to speed up calculations of the local dipolar field in square, circular, and elliptical shaped monolayers and thin films, not only at the center of the film, but across the sample. Calculations show that long elliptical and rectangular films should exhibit the narrowest ferromagnetic resonance linewidth. In addition, discrete dipole calculations show that the Lorentz cavity field (u 0M/3) does not hold in tetragonal films. Depending on the ratio (b/a), the local field can be either less/greater than (u 0M/3): an observation that has implications for ferromagnetic resonance. 3D simple cubic (SC) systems are also examined. For example, while most texts discuss the Lorentz cavity field in terms of a Lorentz sphere, the Lorentz cavity field still holds when a Lorentz sphere is replaced by a the Lorentz cube, but only in cubic SC, FCC and BCC systems. Finally, while the primary emphasis is on the discrete dipole-dipole interaction, contact is made with the continuum model. For example, in the continuous SC dipole model, just one monolayer is required to generate the Lorentz cavity field. This is in marked contrast to the discrete dipole model, where a minimum of five adjacent monolayers is required.


Systematic study of ferromagnetism in CrxSb2-xTe3 topological insulator thin films using electrical and optical techniques

Scientific Reports Springer Nature 8 (2018) 17024

A Singh, V Kamboj, J Liu, J Llandro, L Duffy, SP Senanayak, HE Beere, A Ionescu, T Hesjedal, DA Ritchie, CHW Barnes

Ferromagnetic ordering in a topological insulator can break time-reversal symmetry, realizing dissipationless electronic states in the absence of a magnetic field. The control of the magnetic state is of great importance for future device applications. We provide a detailed systematic study of the magnetic state in highly doped CrxSb2−xTe3 thin films using electrical transport, magneto-optic Kerr effect measurements and terahertz time domain spectroscopy, and also report an efficient electric gating of ferromagnetic order using the electrolyte ionic liquid [DEME][TFSI]. Upon increasing the Cr concentration from x = 0.15 to 0.76, the Curie temperature (Tc) was observed to increase by ~5 times to 176 K. In addition, it was possible to modify the magnetic moment by up to 50% with a gate bias variation of just ±3 V, which corresponds to an increase in carrier density by 50%. Further analysis on a sample with x = 0.76 exhibits a clear insulator-metal transition at Tc, indicating the consistency between the electrical and optical measurements. The direct correlation obtained between the carrier density and ferromagnetism - in both electrostatic and chemical doping - using optical and electrical means strongly suggests a carrier-mediated Ruderman-Kittel-Kasuya-Yoshida (RKKY) coupling scenario. Our low-voltage means of manipulating ferromagnetism, and consistency in optical and electrical measurements provides a way to realize exotic quantum states for spintronic and low energy magneto-electronic device applications.


Magnetic X-ray spectroscopy of two-dimensional CrI3 layers

Materials Letters Elsevier 232 (2018) 5-7

A Frisk, LB Duffy, S Zhang, G Van Der Laan, T Hesjedal

The recently confirmed monolayer ferromagnet CrI3 is a frisky example of a two-dimensional ferromagnetic material with great application potential in van der Waals heterostructures. Here we present a soft X-ray absorption spectroscopy study of the magnetic bulk properties of CrI3, giving insight into the magnetic coupling scenario which is relevant for understanding its thickness-dependent magnetic properties. The experimental Cr X-ray magnetic circular dichroism spectra show a good agreement with calculated spectra for a hybridized ground state. In this high-spin Cr ground state the Cr–I bonds show a strongly covalent character. This is responsible for the strong superexchange interaction and increased spin-orbit coupling, resulting in the large magnetic anisotropy of the two-dimensionally layered CrI3 crystal.


Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii-Moriya interaction

New Journal of Physics Institute of Physics 20 (2018) 113015-

T Lancaster, R Hertel, O Hovorka, H Fabgohr, P Hatton, V Nehruji, M Beg, T Kluyver, R Pepper, L Breth, T Hesjedal, G Downing, D Cortes-Ortuno

Understanding the role of the Dzyaloshinskii-Moriya interaction (DMI) for the formation of helimagnetic order, as well as the emergence of skyrmions in magnetic systems that lack inversion symmetry, has found increasing interest due to the significant potential for novel spin based technologies. Candidate materials to host skyrmions include those belonging to the B20 group such as FeGe, known for stabilising Bloch-like skyrmions, interfacial systems such as cobalt multilayers or Pd/Fe bilayers on top of Ir(111), known for stabilising N´eel-like skyrmions, and, recently, alloys with a crystallographic symmetry where anti-skyrmions are stabilised. Micromagnetic simulations have become a standard approach to aid the design and optimisation of spintronic and magnetic nanodevices and are also applied to the modelling of device applications which make use of skyrmions. Several public domain micromagnetic simulation packages such as OOMMF, MuMax3 and Fidimag already offer implementations of different DMI terms. It is therefore highly desirable to propose a so-called micromagnetic standard problem that would allow one to benchmark and test the different software packages in a similar way as is done for ferromagnetic materials without DMI. Here, we provide a sequence of well-defined and increasingly complex computational problems for magnetic materials with DMI. Our test problems include 1D, 2D and 3D domains, spin wave dynamics in the presence of DMI, and validation of the analytical and numerical solutions including uniform magnetisation, edge tilting, spin waves and skyrmion formation. This set of problems can be used by developers and users of new micromagnetic simulation codes for testing and validation and hence establishing scientific credibility.

Pages