Publications by Thorsten Hesjedal


Real-Space Observation of Skyrmionium in a Ferromagnet-Magnetic Topological Insulator Heterostructure.

Nano letters ACS 18 (2018) 1057-1063

S Zhang, F Kronast, G van der Laan, T Hesjedal

The combination of topological insulators, i.e., bulk insulators with gapless, topologically protected surface states, with magnetic order is a love-hate relationship that can unlock new quantum states and exotic physical phenomena, such as the quantum anomalous Hall effect and axion electrodynamics. Moreover, the unusual coupling between topological insulators and ferromagnets can also result in the formation of topological spin textures in the ferromagnetic layer. Skyrmions are topologically-protected magnetization swirls that are promising candidates for spintronics memory carriers. Here, we report on the observation of skyrmionium in thin ferromagnetic films coupled to a magnetic topological insulator. The occurrence of skyrmionium, which appears as a soliton composed of two skyrmions with opposite winding numbers, is tied to the ferromagnetic state of the topological insulator. Our work presents a new combination of two important classes of topological materials and may open the door to new topologically inspired information-storage concepts in the future.


Microscopic effects of Dy doping in the topological insulator $\mathrmBi_2\mathrmTe_3$

Phys. Rev. B American Physical Society 97 (2018) 174427-174427

LB Duffy, N-J Steinke, JA Krieger, AI Figueroa, K Kummer, T Lancaster, SR Giblin, FL Pratt, SJ Blundell, T Prokscha, A Suter, S Langridge, VN Strocov, Z Salman, G van der Laan, T Hesjedal


Reciprocal space tomography of 3D skyrmion lattice order in a chiral magnet

Proceedings of the National Academy of Sciences National Academy of Sciences (2018)

S Zhang, G van der Laan, J Mueller, L Heinen, M Garst, A Bauer, H Berger, C Pfleiderer, T Hesjedal


Imposing long-range ferromagnetic order in rare-earth-doped magnetic topological-insulator heterostructures

Phys. Rev. Materials American Physical Society 2 (2018) 054201-054201

LB Duffy, A Frisk, DM Burn, N-J Steinke, J Herrero-Martin, A Ernst, G van der Laan, T Hesjedal


Manipulation of Skyrmion Motion by Magnetic Field Gradients

Nature Communications Nature Publishing Group (2018)

S Zhang, WW Wang, DM Burn, H Peng, H Berger, A Bauer, C Pfleiderer, G van der Laan, T Hesjedal

Magnetic skyrmions are particle-like, topologically-protected magnetisation entities that are promising candidates as information carriers in racetrack-memory. The transport of skyrmions in a shift-register-like fashion is crucial for their embodiment in practical devices. Here, we demonstrate that chiral skyrmions in Cu2OSeO3 can be effectively manipulated under the influence of a magnetic field gradient. In a radial field gradient, skyrmions were found to rotate collectively, following a given velocity-radius relationship. As a result of this relationship, and in competition with the elastic properties of the skyrmion lattice, the rotating ensemble disintegrates into a shell-like structure of discrete circular racetracks. Upon reversing the field direction, the rotation sense reverses. Field gradients therefore offer an effective handle for the fine control of skyrmion motion, which is inherently driven by magnon currents. In this scheme, no local electric currents are needed, thus presenting a different approach to shift register-type operations based on spin transfer torque.


Topological surface state of α-Sn on InSb(001) as studied by photoemission

Physical review B: Condensed matter and materials physics American Physical Society 97 (2018) 075101

MR Scholz, L Dudy, F Reis, F Adler, J Aulbach, LJ Collins-McIntyre, LB Duffy, HF Yang, YL Chen, T Hesjedal, ZK Liu, M Hoesch, S Muff, JH Dil, J Schaefer, R Claessen


Probing the Topological Surface State in Bi2Se3 Thin Films Using Temperature-Dependent Terahertz Spectroscopy

ACS PHOTONICS 4 (2017) 2711-2718

VS Kamboj, A Singh, T Ferrus, HE Beere, LB Dufry, T Hesjedal, CHW Barnes, DA Ritchie


Codoping of Sb2Te3 thin films with V and Cr

PHYSICAL REVIEW MATERIALS 1 (2017) ARTN 064409

LB Duffy, AI Figueroa, G van der Laan, T Hesjedal


Correction to Step-Flow Growth of Bi 2 Te 3 Nanobelts

Crystal Growth & Design 17 (2017) 1438-1438

P Schönherr, T Tilbury, H Wang, AA Haghighirad, V Srot, PA van Aken, T Hesjedal


Ultrahigh magnetic field spectroscopy reveals the band structure of the three-dimensional topological insulator Bi2Se3

PHYSICAL REVIEW B 96 (2017) ARTN 121111

A Miyata, Z Yang, A Surrente, O Drachenko, DK Maude, O Portugall, LB Duffy, T Hesjedal, P Plochocka, RJ Nicholas


Proposal of a micromagnetic standard problem for ferromagnetic resonance simulations

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 421 (2017) 428-439

A Baker, M Beg, G Ashton, M Albert, D Chernyshenko, W Wang, S Zhang, M-A Bisotti, M Franchin, CL Hu, R Stamps, T Hesjedal, H Fangohr


Proposal of a micromagnetic standard problem for ferromagnetic resonance simulations

Journal of Magnetism and Magnetic Materials 421 (2017) 428

AA Baker, M Beg, G Ashton, M Albert, D Chernyshenko, W Wang, S Zhang, M-A Bisotti, M Franchin, CL Hu, R Stamps, T Hesjedal, H Fangohr

Nowadays, micromagnetic simulations are a common tool for studying a wide range of different magnetic phenomena, including the ferromagnetic resonance. A technique for evaluating reliability and validity of different micromagnetic simulation tools is the simulation of proposed standard problems. We propose a new standard problem by providing a detailed specification and analysis of a sufficiently simple problem. By analyzing the magnetization dynamics in a thin permalloy square sample, triggered by a well defined excitation, we obtain the ferromagnetic resonance spectrum and identify the resonance modes via Fourier transform. Simulations are performed using both finite difference and finite element numerical methods, with OOMMF and Nmag simulators, respectively. We report the effects of initial conditions and simulation parameters on the character of the observed resonance modes for this standard problem. We provide detailed instructions and code to assist in using the results for evaluation of new simulator tools, and to help with numerical calculation of ferromagnetic resonance spectra and modes in general.


Synthesis of Superconductor-Topological Insulator Hybrid Nanoribbon Structures

NANO 12 (2017) ARTN 1750095

P Schonherr, F Zhang, V Srot, P van Aken, T Hesjedal


Room-temperature helimagnetism in FeGe thin films.

Scientific reports 7 (2017) 123-

SL Zhang, I Stasinopoulos, T Lancaster, F Xiao, A Bauer, F Rucker, AA Baker, AI Figueroa, Z Salman, FL Pratt, SJ Blundell, T Prokscha, A Suter, J Waizner, M Garst, D Grundler, G van der Laan, C Pfleiderer, T Hesjedal

Chiral magnets are promising materials for the realisation of high-density and low-power spintronic memory devices. For these future applications, a key requirement is the synthesis of appropriate materials in the form of thin films ordering well above room temperature. Driven by the Dzyaloshinskii-Moriya interaction, the cubic compound FeGe exhibits helimagnetism with a relatively high transition temperature of 278 K in bulk crystals. We demonstrate that this temperature can be enhanced significantly in thin films. Using x-ray scattering and ferromagnetic resonance techniques, we provide unambiguous experimental evidence for long-wavelength helimagnetic order at room temperature and magnetic properties similar to the bulk material. We obtain α intr = 0.0036 ± 0.0003 at 310 K for the intrinsic damping parameter. We probe the dynamics of the system by means of muon-spin rotation, indicating that the ground state is reached via a freezing out of slow dynamics. Our work paves the way towards the fabrication of thin films of chiral magnets that host certain spin whirls, so-called skyrmions, at room temperature and potentially offer integrability into modern electronics.


Direct experimental determination of the topological winding number of skyrmions in Cu2OSeO3.

Nature communications 8 (2017) 14619-

SL Zhang, G van der Laan, T Hesjedal

The mathematical concept of topology has brought about significant advantages that allow for a fundamental understanding of the underlying physics of a system. In magnetism, the topology of spin order manifests itself in the topological winding number which plays a pivotal role for the determination of the emergent properties of a system. However, the direct experimental determination of the topological winding number of a magnetically ordered system remains elusive. Here, we present a direct relationship between the topological winding number of the spin texture and the polarized resonant X-ray scattering process. This relationship provides a one-to-one correspondence between the measured scattering signal and the winding number. We demonstrate that the exact topological quantities of the skyrmion material Cu2OSeO3 can be directly experimentally determined this way. This technique has the potential to be applicable to a wide range of materials, allowing for a direct determination of their topological properties.


Temperature evolution of topological surface states in Bi2Se3 thin films studied using terahertz spectroscopy

TERAHERTZ, RF, MILLIMETER, AND SUBMILLIMETER-WAVE TECHNOLOGY AND APPLICATIONS X 10103 (2017)

VS Kamboj, A Singh, HE Beere, T Hesjedal, CHW Barnes, DA Ritchie


X-ray magnetic circular dichroism study of Dy-doped Bi2Te3 topological insulator thin films

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 422 (2017) 93-99

AI Figueroa, AA Baker, SE Harrison, K Kummer, G van der Laan, T Hesjedal


Direct experimental determination of spiral spin structures via the dichroism extinction effect in resonant elastic soft x-ray scattering

PHYSICAL REVIEW B 96 (2017) ARTN 094401

SL Zhang, G van der Laan, T Hesjedal


Perfect quintuple layer Bi2Te3 nanowires: Growth and thermoelectric properties

APL MATERIALS 5 (2017) ARTN 086110

P Schonherr, D Kojda, V Srot, SF Fischer, PA van Aken, T Hesjedal


Emergence of Dirac-like bands in the monolayer limit of epitaxial Ge films on Au(1 1 1)

2D Materials 4 (2017) 031005

NBM Schröter, MD Watson, LB Duffy, M Hoesch, Y Chen, T Hesjedal, TK Kim

After the discovery of Dirac fermions in graphene, it has become a natural question to ask whether it is possible to realize Dirac fermions in other two-dimensional (2D) materials as well. In this work, we report the discovery of multiple Dirac-like electronic bands in ultrathin Ge flms grown on Au(1 1 1) by angle-resolved photoelectron spectroscopy. By tuning the thickness of the flms, we are able to observe the evolution of their electronic structure when passing through the monolayer limit. Our discovery may signify the synthesis of germanene, a 2D honeycomb structure made of Ge, which is a promising platform for exploring exotic topological phenomena and enabling potential applications.

Pages