Publications by Gianluca Gregori

Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR

High Power Laser Science and Engineering Cambridge University Press 6 (2018) e43

G Gregori, B Albertazzi, E Falize, E Falize, A Pelka, F Brack, F Kroll, R Yurchak, E Brambrink, P Mabey, N Ozaki, S Pikuz, L Van Box Som, JM Bonnet-Bidaud, JE Cross, E Filippov, R Kodama, M Mouchet, T Morita, Y Sakawa, RP Drake, CC Kuranz, C Li, P Tzeferacos, D Lamb

The influence of a strong external magnetic field on the collimation of a high Mach number plasma flow and its collision with a solid obstacle is investigated experimentally and numerically. The laser irradiation (I ∼ 2 × 1014 W · cm−2 ) of a multilayer target generates a shock wave that produces a rear side plasma expanding flow. Immersed in a homogeneous 10 T external magnetic field, this plasma flow propagates in vacuum and impacts an obstacle located a few mm from the main target. A reverse shock is then formed with typical velocities of the order of 15–20 ± 5 km/s. The experimental results are compared with 2D radiative magnetohydrodynamic simulations using the FLASH code. This platform allows investigating the dynamics of reverse shock, mimicking the processes occurring in a cataclysmic variable of polar type.

Show full publication list