Publications by Gianluca Gregori

Axion particle production in a laser-induced dynamical spacetime

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics 777 (2018) 388-393

MA Wadud, B King, R Bingham, G Gregori

© 2017 The Authors We consider the dynamics of a charged particle (e.g., an electron) oscillating in a laser field in flat spacetime and describe it in terms of the variable mass metric. By applying Einstein's equivalence principle, we show that, after representing the electron motion in a time-dependent manner, the variable mass metric takes the form of the Friedmann–Lemaître–Robertson–Walker metric. We quantize a pseudo-scalar field in this spacetime and derive the production rate of electrically neutral, spinless particles. We show that this approach can provide an alternative experimental method to axion searches.

Electron acceleration by wave turbulence in a magnetized plasma

Nature Physics (2018) 1-5

A Rigby, F Cruz, B Albertazzi, R Bamford, AR Bell, JE Cross, F Fraschetti, P Graham, Y Hara, PM Kozlowski, Y Kuramitsu, DQ Lamb, S Lebedev, JR Marques, F Miniati, T Morita, M Oliver, B Reville, Y Sakawa, S Sarkar, C Spindloe, R Trines, P Tzeferacos, LO Silva, R Bingham, M Koenig, G Gregori

© 2018 The Author(s) Astrophysical shocks are commonly revealed by the non-thermal emission of energetic electrons accelerated in situ 1–3 . Strong shocks are expected to accelerate particles to very high energies 4–6 ; however, they require a source of particles with velocities fast enough to permit multiple shock crossings. While the resulting diffusive shock acceleration 4 process can account for observations, the kinetic physics regulating the continuous injection of non-thermal particles is not well understood. Indeed, this injection problem is particularly acute for electrons, which rely on high-frequency plasma fluctuations to raise them above the thermal pool 7,8 . Here we show, using laboratory laser-produced shock experiments, that, in the presence of a strong magnetic field, significant electron pre-heating is achieved. We demonstrate that the key mechanism in producing these energetic electrons is through the generation of lower-hybrid turbulence via shock-reflected ions. Our experimental results are analogous to many astrophysical systems, including the interaction of a comet with the solar wind 9 , a setting where electron acceleration via lower-hybrid waves is possible.

Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma.

Nature communications 9 (2018) 591-

P Tzeferacos, A Rigby, AFA Bott, AR Bell, R Bingham, A Casner, F Cattaneo, EM Churazov, J Emig, F Fiuza, CB Forest, J Foster, C Graziani, J Katz, M Koenig, C-K Li, J Meinecke, R Petrasso, H-S Park, BA Remington, JS Ross, D Ryu, D Ryutov, TG White, B Reville, F Miniati, AA Schekochihin, DQ Lamb, DH Froula, G Gregori

Magnetic fields are ubiquitous in the Universe. The energy density of these fields is typically comparable to the energy density of the fluid motions of the plasma in which they are embedded, making magnetic fields essential players in the dynamics of the luminous matter. The standard theoretical model for the origin of these strong magnetic fields is through the amplification of tiny seed fields via turbulent dynamo to the level consistent with current observations. However, experimental demonstration of the turbulent dynamo mechanism has remained elusive, since it requires plasma conditions that are extremely hard to re-create in terrestrial laboratories. Here we demonstrate, using laser-produced colliding plasma flows, that turbulence is indeed capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. These results support the notion that turbulent dynamo is a viable mechanism responsible for the observed present-day magnetization.

A sensitive EUV Schwarzschild microscope for plasma studies with sub-micrometer resolution

Review of Scientific Instruments 89 (2018)

U Zastrau, C Rödel, M Nakatsutsumi, T Feigl, K Appel, B Chen, T Döppner, T Fennel, T Fiedler, LB Fletcher, E Förster, E Gamboa, DO Gericke, S Göde, C Grote-Fortmann, V Hilbert, L Kazak, T Laarmann, HJ Lee, P Mabey, F Martinez, KH Meiwes-Broer, H Pauer, M Perske, A Przystawik, S Roling, S Skruszewicz, M Shihab, J Tiggesbäumker, S Toleikis, M Wünsche, H Zacharias, SH Glenzer, G Gregori

© 2018 Author(s). We present an extreme ultraviolet (EUV) microscope using a Schwarzschild objective which is optimized for single-shot sub-micrometer imaging of laser-plasma targets. The microscope has been designed and constructed for imaging the scattering from an EUV-heated solid-density hydrogen jet. Imaging of a cryogenic hydrogen target was demonstrated using single pulses of the free-electron laser in Hamburg (FLASH) free-electron laser at a wavelength of 13.5 nm. In a single exposure, we observe a hydrogen jet with ice fragments with a spatial resolution in the sub-micrometer range. In situ EUV imaging is expected to enable novel experimental capabilities for warm dense matter studies of micrometer-sized samples in laser-plasma experiments.

Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields

Nature Communications 9 (2018)

M Bailly-Grandvaux, JJ Santos, C Bellei, P Forestier-Colleoni, S Fujioka, L Giuffrida, JJ Honrubia, D Batani, R Bouillaud, M Chevrot, JE Cross, R Crowston, S Dorard, JL Dubois, M Ehret, G Gregori, S Hulin, S Kojima, E Loyez, JR Marquès, A Morace, P Nicolaï, M Roth, S Sakata, G Schaumann, F Serres, J Servel, VT Tikhonchuk, N Woolsey, Z Zhang

© 2017 The Author(s). Intense lasers interacting with dense targets accelerate relativistic electron beams, whichtransport part of the laser energy into the target depth. However, the overall laser-to-targetenergy coupling efficiency is impaired by the large divergence of the electron beam, intrinsicto the laser-plasma interaction. Here we demonstrate that an efficient guiding ofMeV electrons with about 30MA current in solid matter is obtained by imposing a laserdrivenlongitudinal magnetostatic field of 600 T. In the magnetized conditions the transportedenergy density and the peak background electron temperature at the 60-μm-thicktarget's rear surface rise by about a factor of five, as unfolded from benchmarked simulations.Such an improvement of energy-density flux through dense matter paves the ground foradvances in laser-driven intense sources of energetic particles and radiation, driving matter toextreme temperatures, reaching states relevant for planetary or stellar science as yet inaccessibleat the laboratory scale and achieving high-gain laser-driven thermonuclear fusion.

Transition from Collisional to Collisionless Regimes in Interpenetrating Plasma Flows on the National Ignition Facility.

Physical review letters 118 (2017) 185003-

JS Ross, DP Higginson, D Ryutov, F Fiuza, R Hatarik, CM Huntington, DH Kalantar, A Link, BB Pollock, BA Remington, HG Rinderknecht, GF Swadling, DP Turnbull, S Weber, S Wilks, DH Froula, MJ Rosenberg, T Morita, Y Sakawa, H Takabe, RP Drake, C Kuranz, G Gregori, J Meinecke, MC Levy, M Koenig, A Spitkovsky, RD Petrasso, CK Li, H Sio, B Lahmann, AB Zylstra, H-S Park

A study of the transition from collisional to collisionless plasma flows has been carried out at the National Ignition Facility using high Mach number (M>4) counterstreaming plasmas. In these experiments, CD-CD and CD-CH planar foils separated by 6-10 mm are irradiated with laser energies of 250 kJ per foil, generating ∼1000  km/s plasma flows. Varying the foil separation distance scales the ion density and average bulk velocity and, therefore, the ion-ion Coulomb mean free path, at the interaction region at the midplane. The characteristics of the flow interaction have been inferred from the neutrons and protons generated by deuteron-deuteron interactions and by x-ray emission from the hot, interpenetrating, and interacting plasmas. A localized burst of neutrons and bright x-ray emission near the midpoint of the counterstreaming flows was observed, suggesting strong heating and the initial stages of shock formation. As the separation of the CD-CH foils increases we observe enhanced neutron production compared to particle-in-cell simulations that include Coulomb collisions, but do not include collective collisionless plasma instabilities. The observed plasma heating and enhanced neutron production is consistent with the initial stages of collisionless shock formation, mediated by the Weibel filamentation instability.

Magnetic field production via the Weibel instability in interpenetrating plasma flows

PHYSICS OF PLASMAS 24 (2017) ARTN 041410

CM Huntington, MJ-E Manuel, JS Ross, SC Wilks, F Fiuza, HG Rinderknecht, H-S Park, G Gregori, DP Higginson, J Park, BB Pollock, BA Remington, DD Ryutov, C Ruyer, Y Sakawa, H Sio, A Spitkovsky, GF Swadling, H Takabe, AB Zylstra

Interaction of a highly radiative shock with a solid obstacle

PHYSICS OF PLASMAS 24 (2017) ARTN 082707

M Koenig, T Michel, R Yurchak, C Michaut, B Albertazzi, S Laffite, E Falize, LVB Som, Y Sakawa, T Sano, Y Hara, T Morita, Y Kuramitsu, P Barroso, A Pelka, G Gregori, R Kodama, N Ozaki, D Lamb, P Tzeferacos

Time evolution and asymmetry of a laser produced blast wave

PHYSICS OF PLASMAS 24 (2017) ARTN 103124

ER Tubman, RHH Scott, HW Doyle, J Meinecke, H Ahmed, RAB Alraddadi, R Bolis, JE Cross, R Crowston, D Doria, D Lamb, B Reville, APL Robinson, P Tzeferacos, M Borghesi, G Gregori, NC Woolsey

Magneto-optic probe measurements in low density-supersonic jets


M Oliver, T White, P Maybe, M Kuehn-Kauffeldt, L Dohl, R Bingham, R Clarke, P Graham, R Heathcote, M Koenig, Y Kuramitsu, DQ Lamb, J Meinecke, T Michel, F Miniati, M Notley, B Reville, S Sarkar, Y Sakawa, AA Schekochihin, P Tzeferacos, N Woolsey, H-S Park, G Gregori

Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo

PHYSICS OF PLASMAS 24 (2017) ARTN 041404

P Tzeferacos, A Rigby, A Bott, AR Bell, R Bingham, A Casner, F Cattaneo, EM Churazov, J Emig, N Flocke, F Fiuza, CB Forest, J Foster, C Graziani, J Katz, M Koenig, C-K Li, J Meinecke, R Petrasso, H-S Park, BA Remington, JS Ross, D Ryu, D Ryutov, K Weide, TG White, B Reville, F Miniati, AA Schekochihin, DH Froula, G Gregori, DQ Lamb

A strong diffusive ion mode in dense ionized matter predicted by Langevin dynamics.

Nature communications 8 (2017) 14125-

P Mabey, S Richardson, TG White, LB Fletcher, SH Glenzer, NJ Hartley, J Vorberger, DO Gericke, G Gregori

The state and evolution of planets, brown dwarfs and neutron star crusts is determined by the properties of dense and compressed matter. Due to the inherent difficulties in modelling strongly coupled plasmas, however, current predictions of transport coefficients differ by orders of magnitude. Collective modes are a prominent feature, whose spectra may serve as an important tool to validate theoretical predictions for dense matter. With recent advances in free electron laser technology, X-rays with small enough bandwidth have become available, allowing the investigation of the low-frequency ion modes in dense matter. Here, we present numerical predictions for these ion modes and demonstrate significant changes to their strength and dispersion if dissipative processes are included by Langevin dynamics. Notably, a strong diffusive mode around zero frequency arises, which is not present, or much weaker, in standard simulations. Our results have profound consequences in the interpretation of transport coefficients in dense plasmas.

Identifying deformation mechanisms in molecular dynamics simulations of laser shocked matter


TG White, A Tikku, MFA Silva, G Gregori, A Higginbotham, DE Eakins

Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet.

Nature communications 7 (2016) 13081-

CK Li, P Tzeferacos, D Lamb, G Gregori, PA Norreys, MJ Rosenberg, RK Follett, DH Froula, M Koenig, FH Seguin, JA Frenje, HG Rinderknecht, H Sio, AB Zylstra, RD Petrasso, PA Amendt, HS Park, BA Remington, DD Ryutov, SC Wilks, R Betti, A Frank, SX Hu, TC Sangster, P Hartigan, RP Drake, CC Kuranz, SV Lebedev, NC Woolsey

The remarkable discovery by the Chandra X-ray observatory that the Crab nebula's jet periodically changes direction provides a challenge to our understanding of astrophysical jet dynamics. It has been suggested that this phenomenon may be the consequence of magnetic fields and magnetohydrodynamic instabilities, but experimental demonstration in a controlled laboratory environment has remained elusive. Here we report experiments that use high-power lasers to create a plasma jet that can be directly compared with the Crab jet through well-defined physical scaling laws. The jet generates its own embedded toroidal magnetic fields; as it moves, plasma instabilities result in multiple deflections of the propagation direction, mimicking the kink behaviour of the Crab jet. The experiment is modelled with three-dimensional numerical simulations that show exactly how the instability develops and results in changes of direction of the jet.

Laboratory analogue of a supersonic accretion column in a binary star system.

Nature communications 7 (2016) ncomms11899-

JE Cross, G Gregori, JM Foster, P Graham, J-M Bonnet-Bidaud, C Busschaert, N Charpentier, CN Danson, HW Doyle, RP Drake, J Fyrth, ET Gumbrell, M Koenig, C Krauland, CC Kuranz, B Loupias, C Michaut, M Mouchet, S Patankar, J Skidmore, C Spindloe, ER Tubman, N Woolsey, R Yurchak, É Falize

Astrophysical flows exhibit rich behaviour resulting from the interplay of different forms of energy-gravitational, thermal, magnetic and radiative. For magnetic cataclysmic variable stars, material from a late, main sequence star is pulled onto a highly magnetized (B>10 MG) white dwarf. The magnetic field is sufficiently large to direct the flow as an accretion column onto the poles of the white dwarf, a star subclass known as AM Herculis. A stationary radiative shock is expected to form 100-1,000 km above the surface of the white dwarf, far too small to be resolved with current telescopes. Here we report the results of a laboratory experiment showing the evolution of a reverse shock when both ionization and radiative losses are important. We find that the stand-off position of the shock agrees with radiation hydrodynamic simulations and is consistent, when scaled to AM Herculis star systems, with theoretical predictions.

Model experiment of magnetic field amplification in laser-produced plasmas via the Richtmyer-Meshkov instability

PHYSICS OF PLASMAS 23 (2016) ARTN 032126

Y Kuramitsu, N Ohnishi, Y Sakawa, T Morita, H Tanji, T Ide, K Nishio, CD Gregory, JN Waugh, N Booth, R Heathcote, C Murphy, G Gregori, J Smallcombe, C Barton, A Diziere, M Koenig, N Woolsey, Y Matsumoto, A Mizuta, T Sugiyama, S Matsukiyo, T Moritaka, T Sano, H Takabe

Nanosecond formation of diamond and lonsdaleite by shock compression of graphite.

Nature communications 7 (2016) 10970-

D Kraus, A Ravasio, M Gauthier, DO Gericke, J Vorberger, S Frydrych, J Helfrich, LB Fletcher, G Schaumann, B Nagler, B Barbrel, B Bachmann, EJ Gamboa, S Göde, E Granados, G Gregori, HJ Lee, P Neumayer, W Schumaker, T Döppner, RW Falcone, SH Glenzer, M Roth

The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.

Theory of density fluctuations in strongly radiative plasmas.

Physical review. E 93 (2016) 033201-

JE Cross, P Mabey, DO Gericke, G Gregori

Derivation of the dynamic structure factor, an important parameter linking experimental and theoretical work in dense plasmas, is possible starting from hydrodynamic equations. Here we obtain, by modifying the governing hydrodynamic equations, a new form of the dynamic structure factor which includes radiative terms. The inclusion of such terms has an effect on the structure factor at high temperatures, which suggests that its effect must be taken into consideration in such regimes.

Dynamic X-ray diffraction observation of shocked solid iron up to 170 GPa.

Proceedings of the National Academy of Sciences of the United States of America 113 (2016) 7745-7749

A Denoeud, N Ozaki, A Benuzzi-Mounaix, H Uranishi, Y Kondo, R Kodama, E Brambrink, A Ravasio, M Bocoum, J-M Boudenne, M Harmand, F Guyot, S Mazevet, D Riley, M Makita, T Sano, Y Sakawa, Y Inubushi, G Gregori, M Koenig, G Morard

Investigation of the iron phase diagram under high pressure and temperature is crucial for the determination of the composition of the cores of rocky planets and for better understanding the generation of planetary magnetic fields. Here we present X-ray diffraction results from laser-driven shock-compressed single-crystal and polycrystalline iron, indicating the presence of solid hexagonal close-packed iron up to pressure of at least 170 GPa along the principal Hugoniot, corresponding to a temperature of 4,150 K. This is confirmed by the agreement between the pressure obtained from the measurement of the iron volume in the sample and the inferred shock strength from velocimetry deductions. Results presented in this study are of the first importance regarding pure Fe phase diagram probed under dynamic compression and can be applied to study conditions that are relevant to Earth and super-Earth cores.

Experimental measurements of the collisional absorption of XUV radiation in warm dense aluminium.

Physical review. E 94 (2016) 023203-

B Kettle, T Dzelzainis, S White, L Li, B Dromey, M Zepf, CLS Lewis, G Williams, S Künzel, M Fajardo, H Dacasa, P Zeitoun, A Rigby, G Gregori, C Spindloe, R Heathcote, D Riley

The collisional (or free-free) absorption of soft x rays in warm dense aluminium remains an unsolved problem. Competing descriptions of the process exist, two of which we compare to our experimental data here. One of these is based on a weak scattering model, another uses a corrected classical approach. These two models show distinctly different behaviors with temperature. Here we describe experimental evidence for the absorption of 26-eV photons in solid density warm aluminium (T_{e}≈1 eV). Radiative x-ray heating from palladium-coated CH foils was used to create the warm dense aluminium samples and a laser-driven high-harmonic beam from an argon gas jet provided the probe. The results indicate little or no change in absorption upon heating. This behavior is in agreement with the prediction of the corrected classical approach, although there is not agreement in absolute absorption value. Verifying the correct absorption mechanism is decisive in providing a better understanding of the complex behavior of the warm dense state.