Publications by Julien Devriendt

Star-gas misalignment in galaxies: I. The properties of galaxies from the Horizon-AGN simulation and comparisons to SAMI


DJ Khim, SK Yi, Y Dubois, JJ Bryant, C Pichon, SM Croom, J Bland-Hawthorn, S Brough, H Choi, J Devriendt, B Groves, MS Owers, SN Richards, JVD Sande, SM Sweet

Recent integral field spectroscopy observations have found that about 11\% of galaxies show star-gas misalignment. The misalignment possibly results from external effects such as gas accretion, interaction with other objects, and other environmental effects, hence providing clues to these effects. We explore the properties of misaligned galaxies using Horizon-AGN, a large-volume cosmological simulation, and compare the result with the result of the Sydney-AAO Multi-object integral field spectrograph (SAMI) Galaxy Survey. Horizon-AGN can match the overall misalignment fraction and reproduces the distribution of misalignment angles found by observations surprisingly closely. The misalignment fraction is found to be highly correlated with galaxy morphology both in observations and in the simulation: early-type galaxies are substantially more frequently misaligned than late-type galaxies. The gas fraction is another important factor associated with misalignment in the sense that misalignment increases with decreasing gas fraction. However, there is a significant discrepancy between the SAMI and Horizon-AGN data in the misalignment fraction for the galaxies in dense (cluster) environments. We discuss possible origins of misalignment and disagreement.

Comparing Galaxy Clustering in Horizon-AGN Simulated Lightcone Mocks and VIDEO Observations


P Hatfield, C Laigle, M Jarvis, JULIEN Devriendt, I Davidzon, O Ilbert, C Pichon, Y Dubois

Hydrodynamical cosmological simulations have recently made great advances in reproducing galaxy mass assembly over cosmic time - as often quantified from the comparison of their predicted stellar mass functions to observed stellar mass functions from data. In this paper we compare the clustering of galaxies from the hydrodynamical cosmological simulated lightcone Horizon-AGN, to clustering measurements from the VIDEO survey observations. Using mocks built from a VIDEO-like photometry, we first explore the bias introduced into clustering measurements by using stellar masses and redshifts derived from SED-fitting, rather than the intrinsic values. The propagation of redshift and mass statistical and systematic uncertainties in the clustering measurements causes us to underestimate the clustering amplitude. We find then that clustering and halo occupation distribution (HOD) modelling results are qualitatively similar in Horizon-AGN and VIDEO. However at low stellar masses Horizon-AGN underestimates the observed clustering by up to a factor of ~3, reflecting the known excess stellar mass to halo mass ratio for Horizon-AGN low mass haloes, already discussed in previous works. This reinforces the need for stronger regulation of star formation in low mass haloes in the simulation. Finally, the comparison of the stellar mass to halo mass ratio in the simulated catalogue, inferred from angular clustering, to that directly measured from the simulation, validates HOD modelling of clustering as a probe of the galaxy-halo connection.

The diverse galaxy counts in the environment of high-redshift massive black holes in Horizon-AGN

Mon. Not. R. Astron. Soc (0)

M Habouzit, M Volonteri, RS Somerville, Y Dubois, S Peirani, C Pichon, JULIEN Devriendt

High-redshift quasars are believed to reside in highly biased regions of the Universe, where black hole (BH) growth is sustained by an enhanced number of mergers and by being at the intersection of filaments bringing fresh gas. This assumption should be supported by an enhancement of the number counts of galaxies in the field of view of quasars. While the current observations of quasar environments do not lead to a consensus on a possible excess of galaxies, the future missions JWST, WFIRST, and Euclid will provide new insights on quasar environments, and will substantially increase the number of study-cases. We are in a crucial period, where we need to both understand the current observations and predict how upcoming missions will improve our understanding of BH environments. Using the large-scale simulation Horizon-AGN, we find that statistically the most massive BHs reside in environments with the largest number counts of galaxies. However, we find a large variance in galaxy number counts, and some massive BHs do not show enhanced counts in their neighborhood. Interestingly, some massive BHs have a very close galaxy companion but no further enhancement of the galaxy number counts at larger scales, in agreement with recent observations. We find that AGN feedback in the surrounding galaxies is able to decrease their luminosity and stellar mass, and therefore to make them un-observable when using restrictive galaxy selection criteria. Radiation from the quasars can spread over large distances, which could affect the formation history of surrounding galaxies, but a careful analysis of these processes requires radiative transfer simulations.

Probing Cosmic Dawn: Modelling the Assembly History, SEDs, and Dust Content of Selected $z\sim9$ Galaxies


H Katz, N Laporte, RS Ellis, J Devriendt, A Slyz

The presence of spectroscopically confirmed Balmer breaks in galaxy spectral energy distributions (SEDs) at $z>9$ provides one of the best probes of the assembly history of the first generations of stars in our Universe. Recent observations of the gravitationally lensed source, MACS 1149_JD1 (JD1), indicate that significant amounts of star formation likely occurred at redshifts as high as $z\simeq15$. The inferred stellar mass, dust mass, and assembly history of JD1, or any other galaxy at these redshifts that exhibits a strong Balmer break, can provide a strong test of our best theoretical models from high-resolution cosmological simulations. In this work, we present the results from a cosmological radiation-hydrodynamics simulation of the region surrounding a massive Lyman-break galaxy. For two of our most massive systems, we show that dust preferentially resides in the vicinity of the young stars thereby increasing the strength of the measured Balmer break such that the simulated SEDs are consistent with the photometry of JD1 and two other $z>9$ systems (GN-z10-3 and GN-z9-1) that have proposed Balmer breaks at high redshift. We find strong variations in the shape and luminosity of the SEDs of galaxies with nearly identical stellar and halo masses, indicating the importance of morphology, assembly history, and dust distribution in making inferences on the properties of individual galaxies at high redshifts. Our results stress the importance that dust may play in modulating the observable properties of galaxies, even at the extreme redshifts of $z>9$.

Cosmic CARNage I: on the calibration of galaxy formation models


A Knebe, FR Pearce, V Gonzalez-Perez, PA Thomas, A Benson, R Asquith, J Blaizot, R Bower, J Carretero, FJ Castander, A Cattaneo, SA Cora, DJ Croton, W Cui, D Cunnama, JE Devriendt, PJ Elahi, A Font, F Fontanot, ID Gargiulo, J Helly, B Henriques, J Lee, GA Mamon, J Onions, ND Padilla, C Power, A Pujol, AN Ruiz, C Srisawat, ARH Stevens, E Tollet, CA Vega-Martínez, SK Yi

We present a comparison of nine galaxy formation models, eight semi-analytical and one halo occupation distribution model, run on the same underlying cold dark matter simulation (cosmological box of co-moving width 125$h^{-1}$ Mpc, with a dark-matter particle mass of $1.24\times 10^9 h^{-1}$ Msun) and the same merger trees. While their free parameters have been calibrated to the same observational data sets using two approaches, they nevertheless retain some 'memory' of any previous calibration that served as the starting point (especially for the manually-tuned models). For the first calibration, models reproduce the observed z = 0 galaxy stellar mass function (SMF) within 3-{\sigma}. The second calibration extended the observational data to include the z = 2 SMF alongside the z~0 star formation rate function, cold gas mass and the black hole-bulge mass relation. Encapsulating the observed evolution of the SMF from z = 2 to z = 0 is found to be very hard within the context of the physics currently included in the models. We finally use our calibrated models to study the evolution of the stellar-to-halo mass (SHM) ratio. For all models we find that the peak value of the SHM relation decreases with redshift. However, the trends seen for the evolution of the peak position as well as the mean scatter in the SHM relation are rather weak and strongly model dependent. Both the calibration data sets and model results are publicly available.

Swirling around filaments: are large-scale structure vortices spinning up dark halos?

ArXiv (0)

C Laigle, C Pichon, S Codis, Y Dubois, DL Borgne, D Pogosyan, J Devriendt, S Peirani, S Prunet, S Rouberol, A Slyz, T Sousbie

The kinematic analysis of dark matter and hydrodynamical simulations suggests that the vorticity in large-scale structure is mostly confined to, and predominantly aligned with their filaments, with an excess of probability of 20 per cent to have the angle between vorticity and filaments direction lower than 60 degrees relative to random orientations. The cross sections of these filaments are typically partitioned into four quadrants with opposite vorticity sign, arising from multiple flows, originating from neighbouring walls. The spins of halos embedded within these filaments are consistently aligned with this vorticity for any halo mass, with a stronger alignment for the most massive structures up to an excess of probability of 165 per cent. On large scales, adiabatic/cooling hydrodynamical simulations display the same vorticity in the gas as in the dark matter. The global geometry of the flow within the cosmic web is therefore qualitatively consistent with a spin acquisition for smaller halos induced by this large-scale coherence, as argued in Codis et al. (2012). In effect, secondary anisotropic infall (originating from the vortex-rich filament within which these lower-mass halos form) dominates the angular momentum budget of these halos. The transition mass from alignment to orthogonality is related to the size of a given multi-flow region with a given polarity. This transition may be reconciled with the standard tidal torque theory if the latter is augmented so as to account for the larger scale anisotropic environment of walls and filaments.

Blowing cold flows away: the impact of early AGN activity on the formation of a brightest cluster galaxy progenitor

ArXiv (0)

Y Dubois, C Pichon, J Devriendt, J Silk, M Haehnelt, T Kimm, A Slyz

Supermassive black holes (BH) are powerful sources of energy that are already in place at very early epochs of the Universe (by z=6). Using hydrodynamical simulations of the formation of a massive M_vir=5 10^11 M_sun halo by z=6 (the most massive progenitor of a cluster of M_vir=2 10^15 M_sun at z=0), we evaluate the impact of Active Galactic Nuclei (AGN) on galaxy mass content, BH self-regulation, and gas distribution inside this massive halo. We find that SN feedback has a marginal influence on the stellar structure, and no influence on the mass distribution on large scales. In contrast, AGN feedback alone is able to significantly alter the stellar-bulge mass content by quenching star formation when the BH is self-regulating, and by depleting the cold gas reservoir in the centre of the galaxy. The growth of the BH proceeds first by a rapid Eddington-limited period fed by direct cold filamentary infall. When the energy delivered by the AGN is sufficiently large to unbind the cold gas of the bulge, the accretion of gas onto the BH is maintained both by smooth gas inflow and clump migration through the galactic disc triggered by merger-induced torques. The feedback from the AGN has also a severe consequence on the baryon mass content within the halo, producing large-scale hot superwinds, able to blow away some of the cold filamentary material from the centre and reduce the baryon fraction by more than 30 per cent within the halo's virial radius. Thus in the very young universe, AGN feedback is likely to be a key process, shaping the properties of the most massive galaxies.

Connecting the cosmic web to the spin of dark halos: implications for galaxy formation

ArXiv (0)

S Codis, C Pichon, J Devriendt, A Slyz, D Pogosyan, Y Dubois, T Sousbie

We investigate the alignment of the spin of dark matter halos relative (i) to the surrounding large-scale filamentary structure, and (ii) to the tidal tensor eigenvectors using the Horizon 4pi dark matter simulation which resolves over 43 million dark matter halos at redshift zero. We detect a clear mass transition: the spin of dark matter halos above a critical mass tends to be perpendicular to the closest filament, and aligned with the intermediate axis of the tidal tensor, whereas the spin of low-mass halos is more likely to be aligned with the closest filament. Furthermore, this critical mass of 5 10^12 is redshift-dependent and scales as (1+z)^-2.5. We propose an interpretation of this signal in terms of large-scale cosmic flows. In this picture, most low-mass halos are formed through the winding of flows embedded in misaligned walls; hence they acquire a spin parallel to the axis of the resulting filaments forming at the intersection of these walls. On the other hand, more massive halos are typically the products of later mergers along such filaments, and thus they acquire a spin perpendicular to this direction when their orbital angular momentum is converted into spin. We show that this scenario is consistent with both the measured excess probabilities of alignment w.r.t. the eigen-directions of the tidal tensor, and halo merger histories. On a more qualitative level, it also seems compatible with 3D visualization of the structure of the cosmic web as traced by "smoothed" dark matter simulations or gas tracer particles. Finally, it provides extra support to the disc forming paradigm presented by Pichon et al (2011) as it extends it by characterizing the geometry of secondary infall at high redshift.

Are cold flows detectable with metal absorption lines?

ArXiv (0)

T Kimm, A Slyz, J Devriendt, C Pichon

[Abridged] Cold gas flowing within the "cosmic web" is believed to be an important source of fuel for star formation at high redshift. However, the presence of such filamentary gas has never been observationally confirmed. In this work, we investigate in detail whether such cold gas is detectable using low-ionisation metal absorption lines, such as CII \lambda1334 as this technique has a proven observational record for detecting gaseous structures. Using a large statistical sample of galaxies from the Mare Nostrum N-body+AMR cosmological simulation, we find that the typical covering fraction of the dense, cold gas in 10^12 Msun haloes at z~2.5 is lower than expected (~5%). In addition, the absorption signal by the interstellar medium of the galaxy itself turns out to be so deep and so broad in velocity space that it completely drowns that of the filamentary gas. A detectable signal might be obtained from a cold filament exactly aligned with the line of sight, but this configuration is so unlikely that it would require surveying an overwhelmingly large number of candidate galaxies to tease it out. Finally, the predicted metallicity of the cold gas in filaments is extremely low (\leq 0.001 Zsun). Should this result persist when higher resolution runs are performed, it would significantly increase the difficulty of detecting filamentary gas inflows using metal lines. However, even if we assume that filaments are enriched to Zsun, the absorption signal that we compute is still weak. We are therefore led to conclude that it is extremely difficult to observationally prove or disprove the presence of cold filaments as the favorite accretion mode of galaxies using low-ionisation metal absorption lines. The Ly-alpha emission route looks more promising but due to the resonant nature of the line, radiative transfer simulations are required to fully characterize the observed signal.

How AGN feedback and metal cooling shape cluster entropy profiles

ArXiv (0)

Y Dubois, J Devriendt, R Teyssier, A Slyz

Observed clusters of galaxies essentially come in two flavors: non cool core clusters characterized by an isothermal temperature profile and a central entropy floor, and cool-core clusters where temperature and entropy in the central region are increasing with radius. Using cosmological resimulations of a galaxy cluster, we study the evolution of its intracluster medium (ICM) gas properties, and through them we assess the effect of different (sub-grid) modelling of the physical processes at play, namely gas cooling, star formation, feedback from supernovae and active galactic nuclei (AGN). More specifically we show that AGN feedback plays a major role in the pre-heating of the proto-cluster as it prevents a high concentration of mass from collecting in the center of the future galaxy cluster at early times. However, AGN activity during the cluster's later evolution is also required to regulate the mass flow into its core and prevent runaway star formation in the central galaxy. Whereas the energy deposited by supernovae alone is insufficient to prevent an overcooling catastrophe, supernovae are responsible for spreading a large amount of metals at high redshift, enhancing the cooling efficiency of the ICM gas. As the AGN energy release depends on the accretion rate of gas onto its central black hole engine, the AGN responds to this supernova enhanced gas accretion by injecting more energy into the surrounding gas, and as a result increases the amount of early pre-heating. We demonstrate that the interaction between an AGN jet and the ICM gas that regulates the growth of the AGN's BH, can naturally produce cool core clusters if we neglect metals. However, as soon as metals are allowed to contribute to the radiative cooling, only the non cool core solution is produced.

Jet-regulated cooling catastrophe

ArXiv (0)

Y Dubois, J Devriendt, A Slyz, R Teyssier

We present the first implementation of Active Galactic Nuclei (AGN) feedback in the form of momentum driven jets in an Adaptive Mesh Refinement (AMR) cosmological resimulation of a galaxy cluster. The jets are powered by gas accretion onto Super Massive Black Holes (SMBHs) which also grow by mergers. Throughout its formation, the cluster experiences different dynamical states: both a morphologically perturbed epoch at early times and a relaxed state at late times allowing us to study the different modes of BH growth and associated AGN jet feedback. BHs accrete gas efficiently at high redshift (z>2), significantly pre-heating proto-cluster halos. Gas-rich mergers at high redshift also fuel strong, episodic jet activity, which transports gas from the proto-cluster core to its outer regions. At later times, while the cluster relaxes, the supply of cold gas onto the BHs is reduced leading to lower jet activity. Although the cluster is still heated by this activity as sound waves propagate from the core to the virial radius, the jets inefficiently redistribute gas outwards and a small cooling flow develops, along with low-pressure cavities similar to those detected in X-ray observations. Overall, our jet implementation of AGN feedback quenches star formation quite efficiently, reducing the stellar content of the central cluster galaxy by a factor 3 compared to the no AGN case. It also dramatically alters the shape of the gas density profile, bringing it in close agreement with the beta model favoured by observations, producing quite an isothermal galaxy cluster for gigayears in the process. However, it still falls short in matching the lower than Universal baryon fractions which seem to be commonplace in observed galaxy clusters.

Influence of AGN jets on the magnetized ICM

ArXiv (0)

Y Dubois, J Devriendt, A Slyz, J Silk

Galaxy clusters are the largest structures for which there is observational evidence of a magnetised medium. Central cores seem to host strong magnetic fields ranging from a few 0.1 microG up to several 10 microG in cooling flow clusters. Numerous clusters harbor central powerful AGN which are thought to prevent cooling flows in some clusters. The influence of such feedback on the magnetic field remains unclear: does the AGN-induced turbulence compensate the loss of magnetic amplification within a cool core? And how is this turbulence sustained over several Gyr? Using high resolution magneto-hydrodynamical simulations of the self-regulation of a radiative cooling cluster, we study for the first time the evolution of the magnetic field within the central core in the presence of a powerful AGN jet. It appears that the jet-induced turbulence strongly amplifies the magnetic amplitude in the core beyond the degree to which it would be amplified by pure compression in the gravitational field of the cluster. The AGN produces a non-cooling core and increases the magnetic field amplitude in good agreement with microG field observations.

The impact of TP-AGB stars on hierarchical galaxy formation models

ArXiv (0)

C Tonini, C Maraston, J Devriendt, D Thomas, J Silk

The spectro-photometric properties of galaxies in galaxy formation models are obtained by combining the predicted history of star formation and mass accretion with the physics of stellar evolution through stellar population models. In the recent literature, significant differences have emerged regarding the implementation of the Thermally-Pulsing Asymptotic Giant Branch phase of stellar evolution. The emission in the TP-AGB phase dominates the bolometric and near-IR spectrum of intermediate-age (~1 Gyr) stellar populations, hence it is crucial for the correct modeling of the galaxy luminosities and colours. In this paper for the first time, we incorporate a full prescription of the TP-AGB phase in a semi-analytic model of galaxy formation. We find that the inclusion of the TP-AGB in the model spectra dramatically alters the predicted colour-magnitude relation and its evolution with redshift. When the TP-AGB phase is active, the rest-frame V-K galaxy colours are redder by almost 2 magnitudes in the redshift range z~2-3 and by 1 magnitude at z~1. Very red colours are produced in disk galaxies, so that the V-K colour distributions of disk and spheroids are virtually undistinguishable at low redshifts. We also find that the galaxy K-band emission is more than 1 magnitude higher in the range z~1-3. This may alleviate the difficulties met by the hierarchical clustering scenario in predicting the red galaxy population at high redshifts. The comparison between simulations and observations have to be revisited in the light of our results.

Accretion, feedback and galaxy bimodality: a comparison of the GalICS semi-analytic model and cosmological SPH simulations

ArXiv (0)

A Cattaneo, J Blaizot, DH Weinberg, S Colombi, R Dave, J Devriendt, B Guiderdoni, N Katz, D Keres

We compare the galaxy population of an SPH simulation to those predicted by the GalICS semi-analytic model and a stripped down version without supernova and AGN feedback. The SPH simulation and the no-feedback GalICS model make similar predictions for the baryonic mass functions of galaxies and for the dependence of these mass functions on environment and redshift. The two methods also make similar predictions for the galaxy content of dark matter haloes as a function of halo mass and for the gas accretion history of galaxies. Both the SPH and no-feedback GalICS models predict a bimodal galaxy population at z=0. The "red'' sequence of gas poor, old galaxies is populated mainly by satellite systems while, contrary to observations, the central galaxies of massive haloes lie on the "blue'' star-forming sequence as a result of continuing hot gas accretion at late times. Furthermore, both models overpredict the observed baryonic mass function, especially at the high mass end. In the full GalICS model, supernova-driven outflows reduce the masses of low and intermediate mass galaxies by about a factor of two. AGN feedback suppresses gas cooling in large haloes, producing a sharp cut-off in the baryonic mass function and moving the central galaxies of these massive haloes to the red sequence. Our results imply that the observational failings of the SPH simulation and the no-feedback GalICS model are a consequence of missing input physics rather than computational inaccuracies, that truncating gas accretion by satellite galaxies automatically produces a bimodal galaxy distribution with a red sequence, but that explaining the red colours of the most massive galaxies requires a mechanism like AGN feedback that suppresses the accretion onto central galaxies in large haloes.

Magnetized Non-linear Thin Shell Instability: Numerical Studies in 2D

ArXiv (0)

F Heitsch, AD Slyz, JEG Devriendt, L Hartmann, A Burkert

We revisit the analysis of the Non-linear Thin Shell Instability (NTSI) numerically, including magnetic fields. The magnetic tension force is expected to work against the main driver of the NTSI -- namely transverse momentum transport. However, depending on the field strength and orientation, the instability may grow. For fields aligned with the inflow, we find that the NTSI is suppressed only when the Alfv\'en speed surpasses the (supersonic) velocities generated along the collision interface. Even for fields perpendicular to the inflow, which are the most effective at preventing the NTSI from developing, internal structures form within the expanding slab interface, probably leading to fragmentation in the presence of self-gravity or thermal instabilities. High Reynolds numbers result in local turbulence within the perturbed slab, which in turn triggers reconnection and dissipation of the excess magnetic flux. We find that when the magnetic field is initially aligned with the flow, there exists a (weak) correlation between field strength and gas density. However, for transverse fields, this correlation essentially vanishes. In light of these results, our general conclusion is that instabilities are unlikely to be erased unless the magnetic energy in clouds is much larger than the turbulent energy. Finally, while our study is motivated by the scenario of molecular cloud formation in colliding flows, our results span a larger range of applicability, from supernovae shells to colliding stellar winds.

GALICS III: Predicted properties for Lyman Break Galaxies at redshift 3

ArXiv (0)

J Blaizot, B Guiderdoni, JEG Devriendt, FR Bouchet, S Hatton, F Stoehr

This paper illustrates how mock observational samples of high-redshift galaxies with sophisticated selection criteria can be extracted from the predictions of GALICS, a hybrid model of hierarchical galaxy formation that couples the outputs of large cosmological simulations and semi-analytic recipes to describe dark matter collapse and the physics of baryons respectively. As an example of this method, we focus on the properties of Lyman Break Galaxies at redshift 3. With the MOMAF software package described in a companion paper, we generate a mock observational sample with selection criteria as similar as possible to those implied in the actual observations of z = 3 LBGs by Steidel et al.(1995). Our model predictions are in good agreement with the observed number density and 2D correlation function. We investigate the optical/IR luminosity budget as well as several other physical properties of LBGs and find them to be in general agreement with observed values. Looking into the future of these LBGs we predict that 75% of them end up as massive ellipticals today, even though only 35% of all our local ellipticals are predicted to have a LBG progenitor. In spite of some shortcomings, this new 'mock observation' method clearly represents a necessary first step toward a more accurate comparison between hierarchical models of galaxy formation and real observational surveys.

Turbulent Ambipolar Diffusion: Numerical Studies in 2D

ArXiv (0)

F Heitsch, EG Zweibel, AD Slyz, JEG Devriendt

Under ideal MHD conditions the magnetic field strength should be correlated with density in the interstellar medium (ISM). However, observations indicate that this correlation is weak. Ambipolar diffusion can decrease the flux-to-mass ratio in weakly ionized media; however, it is generally thought to be too slow to play a significant role in the ISM except in the densest molecular clouds. Turbulence is often invoked in astrophysical problems to increase transport rates above the (very slow) laminar values predicted by kinetic theory. We describe a series of numerical experiments addressing the problem of turbulent transport of magnetic fields in weakly ionized gases. We show, subject to various geometrical and physical restrictions, that turbulence in a weakly ionized medium rapidly diffuses the magnetic flux to mass ratio through the buildup of appreciable ion-neutral drifts on small scales. These results are applicable to the fieldstrength - density correlation in the ISM, as well as the merging of flux systems such as protostar and accretion disk fields or protostellar jets with ambient matter, and the vertical transport of galactic magnetic fields.

Star Formation in Viscous Galaxy Disks

ArXiv (0)

A Slyz, J Devriendt, A Burkert, K Prendergast, J Silk

The Lin and Pringle model (1987) of galactic disk formation postulates that if star formation proceeds on the same timescale as the viscous redistribution of mass and angular momentum in disk galaxies, then the stars attain an exponential density profile. Their claim is that this result holds generally: regardless of the disk galaxy's initial gas and dark matter distribution and independent of the nature of the viscous processes acting in the disk. We present new results from a set of 2D hydro-simulations which investigate their analytic result.

The Impact of Galaxy Formation on the Diffuse Background Radiation

ArXiv (0)

J Silk, J Devriendt

The far infrared background is a sink for the hidden aspects of galaxy formation. At optical wavelengths, ellipticals and spheroids are old, even at $z \sim 1.$ Neither the luminous formation phase nor their early evolution is seen in the visible. We infer that ellipticals and, more generally, most spheroids must have formed in dust-shrouded starbursts. In this article, we show how separate tracking of disk and spheroid star formation enables us to infer that disks dominate near the peak in the cosmic star formation rate at $z \lapproxeq 2$ and in the diffuse ultraviolet/optical/infrared background, whereas spheroid formation dominates the submillimetre background.

Probing Galaxy Formation with High Energy Gamma-Rays

ArXiv (0)

JR Primack, RS Somerville, JS Bullock, JEG Devriendt

We discuss how measurements of the absorption of $\gamma$-rays from GeV to TeV energies via pair production on the extragalactic background light (EBL) can probe important issues in galaxy formation. We use semi-analytic models (SAMs) of galaxy formation, set within the hierarchical structure formation scenario, to obtain predictions of the EBL for 0.1-1000$\mu$m. SAMs incorporate simplified physical treatments of the key processes of galaxy formation --- including gravitational collapse and merging of dark matter halos, gas cooling and dissipation, star formation, supernova feedback and metal production --- and have been shown to reproduce key observations at low and high redshift. Here we also introduce improved modelling of the spectral energy distributions in the mid-to-far-IR arising from emission by dust grains. Assuming a flat \lcdm cosmology with $\Omega_m=0.3$ and Hubble parameter $h=0.65$, we investigate the consequences of variations in input assumptions such as the stellar initial mass function (IMF) and the efficiency of converting cold gas into stars. We conclude that observational studies of the absorption of $\gamma$-rays with energies from 10s of Gev to 10s of TeV will help to determine the EBL, and also help to explain its origin by constraining some of the most uncertain features of galaxy formation theory, including the IMF, the history of star formation, and the reprocessing of light by dust.