Publications by Julien Devriendt


On the Observed Diversity of Star Formation Efficiencies in Giant Molecular Clouds

(0)

K Grisdale, O Agertz, F Renaud, JULIEN Devriendt, A Slyz

Observations find a median star formation efficiency per free-fall time in Milky Way Giant Molecular Clouds (GMCs) on the order of $\epsilon_{\rm ff}\sim 1\%$ and a four order of magnitude spread in values ($0.01\%-100\%$). The origin of the large range in $\epsilon_{\rm ff}$ is still debated and difficult to reproduce with analytical models. We track the formation, evolution and destruction of GMCs in a hydrodynamical simulation of a Milky Way-like galaxy and by deriving cloud properties in an observationally motivated way, measure the distribution of star formation efficiencies which are in excellent agreement with observations. We find no significant link between $\epsilon_{\rm ff}$ and any measured global property of GMCs (e.g. gas mass, velocity dispersion). Instead, a wide range of efficiencies exist in the entire parameter space. From the cloud evolutionary tracks, we find that each cloud follow a \emph{unique} evolutionary path which gives rise to wide diversity in all properties. We argue that it is this diversity in cloud properties, above all else, that results in scatter of $\epsilon_{\rm ff}$.


Magnetogenesis at Cosmic Dawn: Tracing the Origins of Cosmic Magnetic Fields

MNRAS (0)

H Katz, S Martin-Alvarez, J Devriendt, A Slyz, T Kimm

Despite their ubiquity, the origin of cosmic magnetic fields remains unknown. Various mechanisms have been proposed for their existence including primordial fields generated by inflation, or amplification and injection by compact astrophysical objects. Separating the potential impact of each magnetogenesis scenario on the magnitude and orientation of the magnetic field and their impact on gas dynamics may give insight into the physics that magnetised our Universe. In this work, we demonstrate that because the induction equation and solenoidal constraint are linear with $B$, the contribution from different sources of magnetic field can be separated in cosmological magnetohydrodynamics simulations and their evolution and influence on the gas dynamics can be tracked. Exploiting this property, we develop a magnetic field tracer algorithm for cosmological simulations that can track the origin and evolution of different components of the magnetic field. We present a suite of cosmological magnetohydrodynamical RAMSES simulations that employ this algorithm where the primordial field strength is varied to determine the contributions of the primordial and supernovae-injected magnetic fields to the total magnetic energy as a function of time and spatial location. We find that, for our specific model, the supernova-injected fields rarely penetrate far from haloes, despite often dominating the total magnetic energy in the simulations. The magnetic energy density from the supernova-injected field scales with density with a power-law slope steeper than 4/3 and often dominates the total magnetic energy inside of haloes. However, the star formation rates in our simulations are not affected by the presence of magnetic fields, for the ranges of primordial field strengths examined. These simulations represent a first demonstration of the magnetic field tracer algorithm (abridged).


Modelling baryonic feedback for survey cosmology

(0)

NE Chisari, AJ Mead, S Joudaki, P Ferreira, A Schneider, J Mohr, T Tröster, D Alonso, IG McCarthy, S Martin-Alvarez, JULIEN Devriendt, A Slyz, MPV Daalen

Observational cosmology in the next decade will rely on probes of the distribution of matter in the redshift range between $0


Early-type galaxy spin evolution in the Horizon-AGN simulation

The Astrophysical Journal University of Chicago Press (0)

H Choi, SK Yi, Y Dubois, T Kimm, JEG Devriendt, C Pichon

Using the Horizon-AGN simulation data, we study the relative role of mergers and environmental effects in shaping the spin of early-type galaxies (ETGs) after $z \simeq 1$. We follow the spin evolution of 10,037 color-selected ETGs more massive than 10$^{10} \rm \, M_{\odot}$ that are divided into four groups: cluster centrals (3%), cluster satellites (33%), group centrals (5%), and field ETGs (59%). We find a strong mass dependence of the slow rotator fraction, $f_{\rm SR}$, and the mean spin of massive ETGs. Although we do not find a clear environmental dependence of $f_{\rm SR}$, a weak trend is seen in the mean value of spin parameter driven by the satellite ETGs as they gradually lose their spin as their environment becomes denser. Galaxy mergers appear to be the main cause of total spin changes in 94% of central ETGs of halos with $M_{vir} > 10^{12.5}\rm M_{\odot}$, but only 22% of satellite and field ETGs. We find that non-merger induced tidal perturbations better correlate with the galaxy spin-down in satellite ETGs than mergers. Given that the majority of ETGs are not central in dense environments, we conclude that non-merger tidal perturbation effects played a key role in the spin evolution of ETGs observed in the local ($z < 1$) universe.


Lyman-alpha emission properties of simulated galaxies: interstellar medium structure and inclination effects

ArXiv (0)

A Verhamme, Y Dubois, J Blaizot, T Garel, R Bacon, J Devriendt, B Guiderdoni, A Slyz

[abridged] Aims. The aim of this paper is to assess the impact of the interstellar medium (ISM) physics on Lyman-alpha (Lya) radiation transfer and to quantify how galaxy orientation with respect to the line of sight alters observational signatures. Methods. We compare the results of Lya radiation transfer calculations through the ISM of a couple of idealized galaxy simulations with different ISM models. Results. First, the small-scale structuration of the ISM plays a determinant role in shaping a galaxys Lya properties.The artificially warm, and hence smooth, ISM of G1 yields an escape fraction of 50 percent at the Lya line center, and produces symmetrical double-peak profiles. On the contrary, in G2, most young stars are embedded in thick star-forming clouds, and the result is a 10 times lower escape fraction. G2 also displays a stronger outflowing velocity field, which favors the escape of red-shifted photons, resulting in an asymmetric Lya line. Second, the Lya properties of G2 strongly depend on the inclination at which it is observed: From edge-on to face-on, the line goes from a double-peak profile with an equivalent width of -5 Angstrom to a 15 times more luminous red-shifted asymmetric line with EW 90 Angstrom. Conclusions. Lya radiation transfer calculations can only lead to realistic properties in simulations where galaxies are resolved into giant molecular clouds, putting these calculations out of reach of current large scale cosmological simulations. Finally, we find inclination effects to be much stronger for Lya photons than for continuum radiation. This could potentially introduce severe biases in the selection function of narrow-band Lya emitter surveys, which could indeed miss a significant fraction of the high-z galaxy population.


AGN feedback using AMR cosmological simulations

ArXiv (0)

Y Dubois, J Devriendt, A Slyz, R Teyssier

Feedback processes are thought to solve some of the long-standing issues of the numerical modelling of galaxy formation: over-cooling, low angular momentum, massive blue galaxies, extra-galactic enrichment, etc. The accretion of gas onto super-massive black holes in the centre of massive galaxies can release tremendous amounts of energy to the surrounding medium. We show, with cosmological Adaptive Mesh Refinement simulations, how the growth of black holes is regulated by the feedback from Active Galactic Nuclei using a new dual jet/heating mechanism. We discuss how this large amount of feedback is able to modify the cold baryon content of galaxies, and perturb the properties of the hot plasma in their vicinity.


How Does Feedback Affect Milky Way Satellite Formation?

ArXiv (0)

S Geen, A Slyz, J Devriendt

We use sub-parsec resolution hydrodynamic resimulations of a Milky Way (MW) like galaxy at high redshift to investigate the formation of the MW satellite galaxies. More specifically, we assess the impact of supernova feedback on the dwarf progenitors of these satellite, and the efficiency of a simple instantaneous reionisation scenario in suppressing star formation at the low-mass end of this dwarf distribution. Identifying galaxies in our high redshift simulation and tracking them to z=0 using a dark matter halo merger tree, we compare our results to present-day observations and determine the epoch at which we deem satellite galaxy formation must be completed. We find that only the low-mass end of the population of luminous subhalos of the Milky-Way like galaxy is not complete before redshift 8, and that although supernovae feedback reduces the stellar mass of the low-mass subhalos (log(M/Msolar) < 9), the number of surviving satellites around the Milky-Way like galaxy at z = 0 is the same in the run with or without supernova feedback. If a luminous halo is able to avoid accretion by the Milky-Way progenitor before redshift 3, then it is likely to survive as a MW satellite to redshift 0.


The dusty, albeit ultraviolet bright infancy of galaxies

ArXiv (0)

J Devriendt, C Rimes, C Pichon, R Teyssier, DL Borgne, D Aubert, E Audit, S Colombi, S Courty, Y Dubois, S Prunet, Y Rasera, A Slyz, D Tweed

The largest galaxies acquire their mass early on, when the Universe is still youthful. Cold streams violently feed these young galaxies a vast amount of fresh gas, resulting in very efficient star formation. Using a well resolved hydrodynamical simulation of galaxy formation, we demonstrate that these mammoth galaxies are already in place a couple of billion years after the Big Bang. Contrary to local starforming galaxies, where dust re-emits a large part of the stellar ultraviolet (UV) light at infrared and sub-millimetre wavelengths, our self-consistent modelling of dust extinction predicts that a substantial fraction of UV photons should escape from primordial galaxies. Such a model allows us to compute reliably the number of high redshift objects as a function of luminosity, and yields galaxies whose UV luminosities closely match those measured in the deepest observational surveys available. This agreement is remarkably good considering our admittedly still simple modelling of the interstellar medium (ISM) physics. The luminosity functions (LF) of virtual UV luminous galaxies coincide with the existing data over the whole redshift range from 4 to 7, provided cosmological parameters are set to their currently favoured values. Despite their considerable emission at short wavelengths, we anticipate that the counterparts of the brightest UV galaxies will be detected by future sub-millimetre facilities like ALMA


Hierarchical models of high redshift galaxies with thermally pulsing asymptotic giant branch stars: comparison with observations

ArXiv (0)

C Tonini, C Maraston, D Thomas, J Devriendt, J Silk

In a recent paper we presented the first semi-analytic model of galaxy formation in which the Thermally-Pulsing Asymptotic Giant Branch phase of stellar evolution has been fully implemented. Here we address the comparison with observations, and show how the TP-AGB recipe affects the performance of the model in reproducing the colours and near-IR luminosities of high-redshift galaxies. We find that the semi-analytic model with the TP-AGB better matches the colour-magnitude and colour-colour relations at z ~ 2, both for nearly-passive and for star-forming galaxies. The model with TP-AGB produces star-forming galaxies with red V-K colours, thus revising the unique interpretation of high-redshift red objects as 'red & dead'. We also show that without the TP-AGB the semi-analytic model fails at reproducing the observed colours, a situation that cannot be corrected by dust reddening. We also explore the effect of nebular emission on the predicted colour-magnitude relation of star-forming galaxies, to conclude that it does not play a significant role in reddening their colours, at least in the range of star-formation rates covered by the model. Finally, the rest-frame K-band luminosity function at z ~ 2.5 is more luminous by almost 1 magnitude. This indicates that the AGN feedback recipe that is adopted to regulate the high-mass end of the luminosity function should be sophisticated to take the effect of the stellar populations into account at high redshifts.


Building Merger Trees from Cosmological N-body Simulations

ArXiv (0)

D Tweed, J Devriendt, J Blaizot, S Colombi, A Slyz

Although a fair amount of work has been devoted to growing Monte-Carlo merger trees which resemble those built from an N-body simulation, comparatively little effort has been invested in quantifying the caveats one necessarily encounters when one extracts trees directly from such a simulation. To somewhat revert the tide, this paper seeks to provide its reader with a comprehensive study of the problems one faces when following this route. The first step to building merger histories of dark matter haloes and their subhaloes is to identify these structures in each of the time outputs (snapshots) produced by the simulation. Even though we discuss a particular implementation of such an algorithm (called AdaptaHOP) in this paper, we believe that our results do not depend on the exact details of the implementation but extend to most if not all (sub)structure finders. We then highlight different ways to build merger histories from AdaptaHOP haloes and subhaloes, contrasting their various advantages and drawbacks. We find that the best approach to (sub)halo merging histories is through an analysis that goes back and forth between identification and tree building rather than one which conducts a straightforward sequential treatment of these two steps. This is rooted in the complexity of the merging trees which have to depict an inherently dynamical process from the partial temporal information contained in the collection of instantaneous snapshots available from the N-body simulation.


Cooling, Gravity and Geometry: Flow-driven Massive Core Formation

ArXiv (0)

F Heitsch, L Hartmann, AD Slyz, JEG Devriendt, A Burkert

We study numerically the formation of molecular clouds in large-scale colliding flows including self-gravity. The models emphasize the competition between the effects of gravity on global and local scales in an isolated cloud. Global gravity builds up large-scale filaments, while local gravity -- triggered by a combination of strong thermal and dynamical instabilities -- causes cores to form. The dynamical instabilities give rise to a local focusing of the colliding flows, facilitating the rapid formation of massive protostellar cores of a few 100 M$_\odot$. The forming clouds do not reach an equilibrium state, though the motions within the clouds appear comparable to ``virial''. The self-similar core mass distributions derived from models with and without self-gravity indicate that the core mass distribution is set very early on during the cloud formation process, predominantly by a combination of thermal and dynamical instabilities rather than by self-gravity.


LeMoMaF: Lensed Mock Map Facility

ArXiv (0)

JE Forero-Romero, J Blaizot, J Devriendt, LV Waerbeke, B Guiderdoni

We present the Lensed Mock Map Facility (LeMoMaF), a tool designed to perform mock weak lensing measurements on numerically simulated chunks of the universe. Coupling N-body simulations to a semi-analytical model of galaxy formation, LeMoMaF can create realistic lensed images and mock catalogues of galaxies, at wavelengths ranging from the UV to the submm. To demonstrate the power of such a tool we compute predictions of the source-lens clustering effect on the convergence statistics, and quantify the impact of weak lensing on galaxy counts in two different filters. We find that the source-lens clustering effect skews the probability density function of the convergence towards low values, with an intensity which strongly depends on the redshift distribution of galaxies. On the other hand, the degree of enhancement or depletion in galaxy counts due to weak lensing is independent of the source-lens clustering effect. We discuss the impact on the two-points shear statistics to be measured by future missions like SNAP and LSST. The source-lens clustering effect would bias the estimation of sigma_8 from two point statistics by 2% -5%. We conclude that accurate photometric redshifts for individual galaxies are necessary in order to quantify and isolate the source-lens clustering effect.


GALICS I: A hybrid N-body semi-analytic model of hierarchical galaxy formation

ArXiv (0)

S Hatton, JEG Devriendt, S Ninin, FR Bouchet, B Guiderdoni, D Vibert

This is the first paper of a series that describes the methods and basic results of the GalICS model (for Galaxies In Cosmological Simulations). GalICS is a hybrid model for hierarchical galaxy formation studies, combining the outputs of large cosmological N-body simulations with simple, semi-analytic recipes to describe the fate of the baryons within dark matter halos. The simulations produce a detailed merging tree for the dark matter halos including complete knowledge of the statistical properties arising from the gravitational forces. We intend to predict the overall statistical properties of galaxies, with special emphasis on the panchromatic spectral energy distribution emitted by galaxies in the UV/optical and IR/submm wavelength ranges. In this paper, we outline the physically motivated assumptions and key free parameters that go into the model, comparing and contrasting with other parallel efforts. We specifically illustrate the success of the model in comparison to several datasets, showing how it is able to predict the galaxy disc sizes, colours, luminosity functions from the ultraviolet to far infrared, the Tully--Fisher and Faber--Jackson relations, and the fundamental plane in the local universe. We also identify certain areas where the model fails, or where the assumptions needed to succeed are at odds with observations, and pay special attention to understanding the effects of the finite resolution of the simulations on the predictions made. Other papers in this series will take advantage of different data sets available in the literature to extend the study of the limitations and predictive power of GalICS, with particular emphasis put on high-redshift galaxies.


Clustering in the VIRMOS survey: Expected cosmic errors

ASTR SOC P 200 (1999) 153-157

S Colombi, S Charlot, JEG Devriendt

We predict the errors on counts-in-cells statistics measured in the future VIRMOS survey. Several effects are included, such as variation of clustering, biasing, and geometry. Most importantly for the survey strategy, sparse sampling appears to have no particular advantage in this case, especially for higher order statistics at high redshift. The predicted accuracy is a few percent for the variance, and about 10 percent for the skewness at z = 1 in a small dynamic range around 1 h(-1) Mpc.


The spectral appearance of primeval galaxies

ASTR SOC P 200 (1999) 299-308

B Guiderdoni, JEG Devriendt

The current and forthcoming observations of large samples of high-redshift galaxies selected according to various photometric and spectroscopic criteria can be interpreted in the context of galaxy formation, by means of models of evolving spectral energy distributions (SEDs). We hereafter present STARDUST which gives synthetic SEDs from the far UV to the submm wavelength range. These SEDs are designed to be implemented into semi-analytic models of galaxy formation.


Semi-analytic models and background hydrogen-ionizing flux

ESO ASTROPHY SYMP (1999) 301-302

JEG Devriendt, B Guiderdoni, SK Sethi

We estimate the contribution of galaxies to the cosmic background flux at 912 Angstrom by means of an extended semi-analytic model of galaxy formation and evolution which takes into account the absorption of Lyman-limit photons by HI and dust in the interstellar medium (ISM) of the galaxies. We find that, though the background Lyman-limit flux escaping from galaxies is negligible compared to the flux from quasars at high redshifts, these two contributions become comparable at z similar or equal to 0.


Modelling High-z Galaxies from the far-UV to the far-IR

Proceedings of the XVIIIth Rencontres de Moriond (1998)

JEG Devriendt, B Guiderdoni, SK Sethi

In this paper, we report on a first estimate of the contribution of galaxies to the diffuse extragalactic background from the far-UV to the submm, based on semi--analytic models of galaxy formation and evolution. We conclude that the global multi--wavelength picture seems to be consistent provided a quite important fraction of star--formation be hidden in dust--enshrouded systems at intermediate and high--redshift. We show that, according to such models, galaxies cannot stand as important contributors to the background hydrogen-ionizing flux at high-redshift unless neutral hydrogen absorption sites are clumpy and uncorrelated with star forming regions.We briefly discuss the robustness of such a result.


Contribution of galaxies to the background hydrogen-ionizing flux

Monthly Notices of the Royal Astronomical Society 298 (1998) 708-718

JEG Devriendt, SK Sethi, B Guiderdoni, BB Nath

We estimate the evolution of the contribution of galaxies to the cosmic background flux at 912 Å by means of a semi-analytic model of galaxy formation and evolution. Such modelling has been quite successful in reproducing the optical properties of galaxies. We assume that high-redshift damped Lyman α systems are the progenitors of present-day galaxies, and we design a series of models that are consistent with the evolution of cosmic comoving emissivities in the available near-infrared, optical, ultraviolet and far-infrared bands along with the evolution of the neutral hydrogen content and average metallicity of damped Lyman α systems. We use these models to compute the galactic contribution to the Lyman-limit emissivity and background flux for 0 ≃ z ≤ 4. We take into account the absorption of Lyman-limit photons by HI and dust in the interstellar medium of the galaxies. We find that the background Lyman-limit flux due to galaxies might dominate (or be comparable to) the contribution from quasars at almost all redshifts if the absorption by HI in the interstellar medium is neglected. Such HI absorption would result in a severe diminishing of this flux - by almost three orders of magnitude at high redshifts and by one to two orders at z ≃ 0. Though the resulting galaxy flux is completely negligible at high redshifts, it is comparable to the quasar flux at z ≃ 0.


Caught in the rhythm II: Competitive alignments of satellites with their inner halo and central galaxy

(0)

C Welker, C Power, C Pichon, Y Dubois, J Devriendt, S Codis

The anisotropic distribution of satellites around the central galaxy of their host halo is well-documented. However the relative impact of baryons and dark matter in shaping this distribution is still debated. Using the simulation Horizon-AGN, the angular distribution of satellite galaxies with respect to their central counterpart and halo is quantified. Below one Rvir, satellites cluster more strongly in the plane of the central, rather than merely tracing the shape of their host halo. This is due to the increased isotropy of inner haloes acquired through their inside-out assembly in vorticity-rich flows along the cosmic web. While the effect of centrals decreases with distance, halos' triaxiality increases, impacting more and more the satellite's distribution. Effects become comparable just outside one virial radius. Above this scale, the filamentary infall also impacts the satellites distribution, dominating above two virial radii. The central's morphology plays a governing role: the alignment w.r.t. the central plane is four times stronger in haloes hosting stellar discs than in spheroids. But the impact of the galactic plane decreases for lower satellite-to-central mass ratios, suggesting this might not hold for dwarf satellites of the Local group. The orientation of the Milky-Way's satellites traces their cosmic filament, their level of coplanarity is consistent with systems of similar mass and cosmic location in Horizon-AGN. However, the strong impact of galactic planes in massive groups and clusters bounds the likelihood of finding a relaxed region where satellites can be used to infer halo shape. The minor-to-major axis ratios for haloes with log(M0/Msun)&gt;13.5 is underestimated by 10%. This error soars quickly to 30-40% for individual halo measurements.


The progenitor set of present-day early-type galaxies

arXiV (0)

S Kaviraj, JEG Devriendt, I Ferreras, SK Yi, J Silk

We present a comprehensive theoretical study, within a fully realistic semi-analytical framework, of the photometric properties of early-type progenitors in the redshift range 0<z<1, as a function of the luminosity and local environment of the early-type remnant at present-day. We find that, averaging across all environments at z~1, less than 50 percent of the stellar mass which ends up in early-types today is actually in early-type progenitors at this redshift. The corresponding value is ~65 percent in clusters due to faster morphological transformations in the such dense environments. We develop probabilistic prescriptions which provide a means of including spiral (i.e. non early-type) progenitors at intermediate and high redshifts, based on their luminosity and optical (BVK) colours. For example, at intermediate redshifts (z~0.5), large (M_B<-21.5), red (B-V>0.7) spirals have ~75-95 percent chance of being a progenitor, while the corresponding probability for large blue spirals (M_B<-21.5, B-V<0.7) is ~50-75 percent. Finally, we explore the correspondence between the true progenitor set of present-day early-types and the commonly used `red-sequence', defined as the set of galaxies within the part of the colour-magnitude space which is dominated by early-type objects. While large members (M_V<-22) of the `red sequence' trace the progenitor set accurately in terms of numbers and mass, the relationship breaks down severely at fainter luminosities (M_V>-21). Hence the red sequence is generally not a good proxy for the progenitor set of early-type galaxies.

Pages