Publications by Neil Bowles

Spectral characterization of analog samples in anticipation of OSIRIS-REx's arrival at Bennu: A blind test study

Icarus Elsevier 319 (2018) 701-723

KL Donaldson Hanna, DL Schrader, EA Cloutis, GD Cody, AJ King, TJ McCoy, DM Applin, JP Mann, NE Bowles, Brucato, HC Connolly, E Dotto, LP Keller, LF Lim, BE Clark, VE Hamilton, C Lantz, DS Lauretta, SS Russell, PF Schofield

We present spectral measurements of a suite of mineral mixtures and meteorites that are possible analogs for asteroid (101955) Bennu, the target asteroid for NASA's Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) mission. The sample suite, which includes anhydrous and hydrated mineral mixtures and a suite of chondritic meteorites (CM, CI, CV, CR, and L5), was chosen to characterize the spectral effects due to varying amounts of aqueous alteration and minor amounts of organic material. Our results demonstrate the utility of mineral mixtures for understanding the mixing behavior of meteoritic materials and identifying spectrally dominant species across the visible to near-infrared (VNIR) and thermal infrared (TIR) spectral ranges. Our measurements demonstrate that, even with subtle signatures in the spectra of chondritic meteorites, we can identify diagnostic features related to the minerals comprising each of the samples. Also, the complementary nature of the two spectral ranges regarding their ability to detect different mixture and meteorite components can be used to characterize analog sample compositions better. However, we observe differences in the VNIR and TIR spectra between the mineral mixtures and the meteorites. These differences likely result from (1) differences in the types and physical disposition of constituents in the mixtures versus in meteorites, (2) missing phases observed in meteorites that we did not add to the mixtures, and (3) albedo differences among the samples. In addition to the initial characterization of the analog samples, we will use these spectral measurements to test phase detection and abundance determination algorithms in anticipation of mapping Bennu's surface properties and selecting a sampling site.

A chemical survey of exoplanets with ARIEL

Experimental Astronomy Springer 46 (2018) 135-209

G Tinetti, P Drossart, P Eccleston, P Hartogh, A Heske, J Leconte, G Micela, M Ollivier, P Eccleston, G Pilbratt, L Puig, D Turrini, N Bowles

Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. The Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL) has been selected by the European Space Agency as the next mediumclass science mission, M4, to address these scientific questions. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25-7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10-100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.

CASTAway: An asteroid main belt tour and survey.

Advances in Space Research Elsevier 62 (2017) 1998-2025

NE Bowles, C Snodgrass, JP Sanchez, JA Arnold, P Eccleston, T Andert, A Probst, G Naletto, AC Vandaele, D de Leon, A Nathues, IR Thomas, N Thomas, L Jorda, V da Deppo, H Haack, SF Green, B Carry, KL Donaldson Hanna, J Leif Jorgensen, A Kereszturi, FE DeMeo, JK Davies

CASTAway is a mission concept to explore our Solar System’s main asteroid belt. Asteroids and comets provide a window into the formation and evolution of our Solar System and the composition of these objects can be inferred from space-based remote sensing using spectroscopic techniques. Variations in composition across the asteroid populations provide a tracer for the dynamical evolution of the Solar System. The mission combines a long-range (point source) telescopic survey of over 10,000 objects, targeted close encounters with 10 – 20 asteroids and serendipitous searches to constrain the distribution of smaller (e.g. 10 m) size objects into a single concept. With a carefully targeted trajectory that loops through the asteroid belt, CASTAway would provide a comprehensive survey of the main belt at multiple scales. The scientific payload comprises a 50 cm diameter telescope that includes an integrated low-resolution (R = 30 – 100) spectrometer and visible context imager, a thermal (e.g. 6 – 16 μm) imager for use during the flybys, and modified star tracker cameras to detect small (~10 m) asteroids. The CASTAway spacecraft and payload have high levels of technology readiness and are designed to fit within the programmatic and cost caps for a European Space Agency medium class mission, whilst delivering a significant increase in knowledge of our Solar System.

The proposed Caroline ESA M3 mission to a Main Belt Comet

Advances in Space Research Elsevier 62 (2018) 1921-1946

GH Jones, J Agarwal, N Bowles, M Burchell, AJ Coates, A Fitzsimmons, A Graps, HH Hsieh, CM Lisse, SC Lowry, A Masters, C Snodgrass, C Tubiana

We describe Caroline, a mission proposal submitted to the European Space Agency in 2010 in response to the Cosmic Visions M3 call for medium-sized missions. Caroline would have travelled to a Main Belt Comet (MBC), characterizing the object during a flyby, and capturing dust from its tenuous coma for return to Earth. MBCs are suspected to be transition objects straddling the traditional boundary between volatile–poor rocky asteroids and volatile–rich comets. The weak cometary activity exhibited by these objects indicates the presence of water ice, and may represent the primary type of object that delivered water to the early Earth. The Caroline mission would have employed aerogel as a medium for the capture of dust grains, as successfully used by the NASA Stardust mission to Comet 81P/Wild 2. We describe the proposed mission design, primary elements of the spacecraft, and provide an overview of the science instruments and their measurement goals. Caroline was ultimately not selected by the European Space Agency during the M3 call; we briefly reflect on the pros and cons of the mission as proposed, and how current and future mission MBC mission proposals such as Castalia could best be approached.

The Castalia mission to Main Belt Comet 133P/Elst-Pizarro

Advances in Space Research Elsevier 62 (2017) 1947-1976

C Snodgrass, GH Jones, H Boehnhardt, P Beck, I Bertini, N Bowles, MT Capria, C Carr, M Ceriotti, AJ Coates, V Della Corte, K Donaldson Hanna, W Kofman, LM Lara, K Laudan, J Licandro, SC Lowry, F Marzari, A Masters, KJ Meech, F Moreno, A Morse, R Orosei, A Pack

We describe Castalia, a proposed mission to rendezvous with a Main Belt Comet (MBC), 133P/Elst-Pizarro. MBCs are a recently discovered population of apparently icy bodies within the main asteroid belt between Mars and Jupiter, which may represent the remnants of the population which supplied the early Earth with water. Castalia will perform the first exploration of this population by characterising 133P in detail, solving the puzzle of the MBC’s activity, and making the first in situ measurements of water in the asteroid belt. In many ways a successor to ESA’s highly successful Rosetta mission, Castalia will allow direct comparison between very different classes of comet, including measuring critical isotope ratios, plasma and dust properties. It will also feature the first radar system to visit a minor body, mapping the ice in the interior. Castalia was proposed, in slightly different versions, to the ESA M4 and M5 calls within the Cosmic Vision programme. We describe the science motivation for the mission, the measurements required to achieve the scientific goals, and the proposed instrument payload and spacecraft to achieve these.

Isolation of seismic signal from InSight/SEIS-SP microseismometer measurements

Space Science Reviews Springer 214 (2018) 95-

J Hurley, N Murdoch, NA Teanby, N Bowles, TJ Warren, SB Calcutt, D Mimoun, WT Pike

The InSight mission is due to launch in May 2018, carrying a payload of novel instruments designed and tested to probe the interior of Mars whilst deployed directly on the Martian regolith and partially isolated from the Martian environment by the Wind and Thermal Shield. Central to this payload is the seismometry package SEIS consisting of two seismometers, which is supported by a suite of environmental/meteorological sensors (Temperature and Wind Sensor for InSight TWINS; and Auxiliary Payload Sensor Suite APSS). In this work, an optimal estimations inversion scheme which aims to decorrelate the short-period seismometer (SEIS-SP) signal due to seismic activity alone from the environmental signal and random noise is detailed, and tested on both simulated and Viking data. This scheme also applies a module to identify measurements contaminated by Single Event Phenomena (SEP). This scheme will be deployed as the pre-processing pipeline for all SEIS-SP data prior to release to the scientific community for analysis.

The ARIEL space mission

Proceedings of SPIE Society of Photo-optical Instrumentation Engineers 10698 (2018)
Part of a series from Proceedings of SPIE

E Pascale, N Bezawada, J Barstow, J-P Beaulieu, N Bowles, V Coudé Du Foresto, A Coustenis, L Decin, P Drossart, P Eccleston, T Encrenaz, F Forget, M Griffin, M Güdel, P Hartogh, A Heske, P-O Lagage, J Leconte, P Malaguti, G Micela, K Middleton, M Min, A Moneti, JC Morales, M Ollivier

The Atmospheric Remote-Sensing Infrared Exoplanet Large-survey, ARIEL, has been selected to be the next M4 space mission in the ESA Cosmic Vision programme. From launch in 2028, and during the following 4 years of operation, ARIEL will perform precise spectroscopy of the atmospheres of about 1000 known transiting exoplanets using its metre-class telescope, a three-band photometer and three spectrometers that will cover the 0.5 μm to 7.8 μm region of the electromagnetic spectrum. The payload is designed to perform primary and secondary transit spectroscopy, and to measure spectrally resolved phase curves with a stability of < 100 ppm (goal 10 ppm). Observing from an L2 orbit, ARIEL will provide the first statistically significant spectroscopic survey of hot and warm planets. These are an ideal laboratory in which to study the chemistry, the formation and the evolution processes of exoplanets, to constrain the thermodynamics, composition and structure of their atmospheres, and to investigate the properties of the clouds.

Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter

Icarus Elsevier 302 (2017) 426-436

P Irwin, N Bowles, AS Braude, R Garland, S Calcutt

Observations of the visible/near-infrared reflectance spectrum of Jupiter have been made with the Very Large Telescope (VLT) Multi Unit Spectroscopic Explorer (MUSE) instrument in the spectral range 0.48 – 0.93 μm in support of the NASA/Juno mission. These spectra contain spectral signatures of gaseous ammonia (NH3), whose abundance above the cloud tops can be determined if we have reliable information on its absorption spectrum. While there are a number of sources of NH3 absorption data in this spectral range, they cover small sub-ranges, which do not necessarily overlap and have been determined from a variety of sources. There is thus considerable uncertainty regarding the consistency of these different sources when modelling the reflectance of the entire visible/near-IR range. In this paper we analyse the VLT/MUSE observations of Jupiter to determine which sources of ammonia absorption data are most reliable. We find that the band model coefficients of Bowles et al. (2008) provide, in general, the best combination of reliability and wavelength coverage over the MUSE range. These band data appear consistent with ExoMOL ammonia line data of Yurchenko et al. (2011), at wavelengths where they overlap, but these latter data do not cover the ammonia absorption bands at 0.79 and 0.765 μm, which are prominent in our MUSE observations. However, we find the band data of Bowles et al. (2008) are not reliable at wavelengths less than 0.758 μm. At shorter wavelengths we find the laboratory observations of Lutz and Owen (1980) provide a good indication of the position and shape of the ammonia absorptions near 0.552 μm and 0.648 μm, but their absorption strengths appear inconsistent with the band data of Bowles et al. (2008) at longer wavelengths. Finally, we find that the line data of the 0.648 μm absorption band of Giver et al. (1975) are not suitable for modelling these data as they account for only 17% of the band absorption and cannot be extended reliably to the cold temperatures and H2/He-broadening conditions found in Jupiter’s atmosphere. This work is of significance not only for solar system planetary physics, but also for future proposed observations of Jupiter-like planets orbiting other stars, such as with NASA’s planned Wide-Field Infrared Survey Telescope (WFIRST).

The Oxford space environment goniometer: A new experimental setup for making directional emissivity measurements under a simulated space environment

Review of Scientific Instruments American Institute of Physics 88 (2017) 124502-

TJ Warren, NE Bowles, K Donaldson Hanna, IR Thomas

Measurements of the light scattering behaviour of the regoliths of airless bodies via remote sensing techniques in the Solar System, across wavelengths from the visible to the far infrared, are essential in understanding their surface properties. A key parameter is knowledge of the angular behaviour of scattered light, usually represented mathematically by a phase function. The phase function is believed to be dependent on many factors including the following: surface composition, surface roughness across all length scales, and the wavelength of radiation. Although there have been many phase function measurements of regolith analog materials across visible wavelengths, there have been no equivalent measurements made in the thermal infrared (TIR). This may have been due to a lack of TIR instruments as part of planetary remote sensing payloads. However, since the launch of Diviner to the Moon in 2009, OSIRIS-Rex to the asteroid Bennu in 2016, and the planned launch of BepiColombo to Mercury in 2018, there is now a large quantity of TIR remote sensing data that need to be interpreted. It is therefore important to extend laboratory phase function measurements to the TIR. This paper describes the design, build, calibration, and initial measurements from a new laboratory instrument that is able to make phase function measurements of analog planetary regoliths across wavelengths from the visible to the TIR.

Seismic coupling of short-period wind noise through Mars’ regolith for NASA’s InSight Lander

Space Science Reviews Springer 211 (2016) 485-500

NA Teanby, J Stevanović, J Wookey, N Murdoch, J Hurley, R Myhill, NE Bowles, SB Calcutt, WT Pike

NASA’s InSight lander will deploy a tripod-mounted seismometer package onto the surface of Mars in late 2018. Mars is expected to have lower seismic activity than the Earth, so minimisation of environmental seismic noise will be critical for maximising observations of seismicity and scientific return from the mission. Therefore, the seismometers will be protected by a Wind and Thermal Shield (WTS), also mounted on a tripod. Nevertheless, wind impinging on the WTS will cause vibration noise, which will be transmitted to the seismometers through the regolith (soil). Here we use a 1:1-scale model of the seismometer and WTS, combined with field testing at two analogue sites in Iceland, to determine the transfer coefficient between the two tripods and quantify the proportion of WTS vibration noise transmitted through the regolith to the seismometers. The analogue sites had median grain sizes in the range 0.3–1.0 mm, surface densities of 1.3–1.8gcm−3, and an effective regolith Young’s modulus of 2.5−1.4+1.9MPa. At a seismic frequency of 5 Hz the measured transfer coefficients had values of 0.02–0.04 for the vertical component and 0.01–0.02 for the horizontal component. These values are 3–6 times lower than predicted by elastic theory and imply that at short periods the regolith displays significant anelastic behaviour. This will result in reduced short-period wind noise and increased signal-to-noise. We predict the noise induced by turbulent aerodynamic lift on the WTS at 5 Hz to be ∼2×10−10ms−2Hz−1/2 with a factor of 10 uncertainty. This is at least an order of magnitude lower than the InSight short-period seismometer noise floor of 10−8ms−2Hz−1/2.

Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: Application to Diviner thermal infrared observations of the Moon

Icarus Elsevier 283 (2016) 326-342

KL Donaldson Hanna, BT Greenhagen, WR Patterson, CM Pieters, JF Mustard, NE Bowles, DA Paige, TD Glotch, C Thompson

<p>Currently, few thermal infrared measurements exist of fine particulate ( &lt; 63 μm) analogue samples (e.g. minerals, mineral mixtures, rocks, meteorites, and lunar soils) measured under simulated lunar condi- tions. Such measurements are fundamental for interpreting thermal infrared (TIR) observations by the Diviner Lunar Radiometer Experiment (Diviner) onboard NASA’s Lunar Reconnaissance Orbiter as well as future TIR observations of the Moon and other airless bodies. In this work, we present thermal in- frared emissivity measurements of a suite of well-characterized Apollo lunar soils and a fine particu- late ( &lt; 25 μm) San Carlos olivine sample as we systematically vary parameters that control the near- surface environment in our vacuum chamber (atmospheric pressure, incident solar-like radiation, and sample cup temperature). The atmospheric pressure is varied between ambient (1000 mbar) and vacuum ( &lt; 10^−3 mbar) pressures, the incident solar-like radiation is varied between 52 and 146 mW/cm 2 , and the sample cup temperature is varied between 325 and 405 K. Spectral changes are characterized as each parameter is varied, which highlight the sensitivity of thermal infrared emissivity spectra to the atmospheric pressure and the incident solar-like radiation. Finally spectral measurements of Apollo 15 and 16 bulk lunar soils are compared with Diviner thermal infrared observations of the Apollo 15 and 16 sam- pling sites. This comparison allows us to constrain the temperature and pressure conditions that best simulate the near-surface environment of the Moon for future laboratory measurements and to better interpret lunar surface compositions as observed by Diviner.</p>

Space weathering effects in Diviner Lunar Radiometer multispectral infrared measurements of the lunar Christiansen Feature: Characteristics and mitigation

Icarus Elsevier 283 (2016) 343-351

PG Lucey, BT Greenhagen, E Song, JA Arnold, M Lemelin, K Donaldson-Hanna, NE Bowles, TD Glotch, DA Paige

Multispectral infrared measurements by the Diviner Lunar Radiometer Experiment on the Lunar Renaissance Orbiter enable the characterization of the position of the Christiansen Feature, a thermal infrared spectral feature that laboratory work has shown is proportional to the bulk silica content of lunar surface materials. Diviner measurements show that the position of this feature is also influenced by the changes in optical and physical properties of the lunar surface with exposure to space, the process known as space weathering. Large rayed craters and lunar swirls show corresponding Christiansen Feature anomalies. The space weathering effect is likely due to differences in thermal gradients in the optical surface imposed by the space weathering control of albedo. However, inspected at high resolution, locations with extreme compositions and Christiansen Feature wavelength positions – silica-rich and olivine-rich areas – do not have extreme albedos, and fall off the albedo- Christiansen Feature wavelength position trend occupied by most of the Moon. These areas demonstrate that the Christiansen Feature wavelength position contains compositional information and is not solely dictated by albedo. An optical maturity parameter derived from near-IR measurements is used to partly correct Diviner data for space weathering influences.

Dual-telescope multi-channel thermal-infrared radiometer for outer planet fly-by missions

Acta Astronautica Elsevier 128 (2016) 628-639

S Aslam, M Amato, N Bowles, S Calcutt, T Hewagama, J Howard, C Howett, W-T Hsieh, T Hurford, J Hurley, P Irwin, DE Jennings, E Kessler, B Lakew, M Loeffler, M Mellon, A Nicoletti, CA Nixon, N Putzig, G Quilligan, J Rathbun, M Segura, J Spencer, J Spitale, G West

The design of a versatile dual-telescope thermal-infrared radiometer spanning the spectral wavelength range 8–200 µm, in five spectral pass bands, for outer planet fly-by missions is described. The dual-telescope design switches between a narrow-field-of-view and a wide-field-of-view to provide optimal spatial resolution images within a range of spacecraft encounters to the target. The switchable dual-field-of-view system uses an optical configuration based on the axial rotation of a source-select mirror along the optical axis. The optical design, spectral performance, radiometric accuracy, and retrieval estimates of the instrument are discussed. This is followed by an assessment of the surface coverage performance at various spatial resolutions by using the planned NASA Europa Mission 13-F7 fly-by trajectories as a case study.

The science of ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey)


G Tinetti, P Drossart, P Eccleston, P Hartogh, A Heske, J Lecont, G Micela, M Ollivier, G Pilbratt, L Puig, D Turrini, B Vandenbussche, P Wolkenberg, E Pascale, J-P Beaulieu, M Guedel, M Min, M Rataj, T Ray, I Ribas, J Barstow, N Bowles, A Coustenis, VC du Foresto, L Decin, T Encrenaz, F Forget, M Friswell, M Griffin, O Lagage, P Malaguti, A Moneti, JC Morales, E Pace, M Rocchetto, S Sarkar, F Selsis, W Taylor, J Tennyson, O Venot, IP Waldmann, G Wright, T Zingales, MR Zapatero-Osorio

Constraints on olivine-rich rock types on the Moon as observed by Diviner and M 3 : Implications for the formation of the lunar crust

Journal of Geophysical Research: Planets American Geophysical Union 121 (2016) 1342-1361

J Arnold, TD Glotch, PG Lucey, E Song, IR Thomas, NE Bowles, BT Greenhagen

We place upper limits on lunar olivine abundance using midinfrared (5–25 µm) data from the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment (Diviner) along with effective emissivity spectra of mineral mixtures in a simulated lunar environment. Olivine-bearing, pyroxene-poor lithologies have been identified on the lunar surface with visible-near-infrared (VNIR) observations. Since the Kaguya Spectral Profiler (SP) VNIR survey of olivine-rich regions is the most complete to date, we focus this work on exposures identified by that study. We first confirmed the locations with VNIR data from the Moon Mineralogy Mapper (M3) instrument. We then developed a Diviner olivine index from our laboratory data which, along with M3and Lunar Reconnaissance Orbiter Camera wide-angle camera data, was used to select the geographic area over which Diviner emissivity data were extracted. We calculate upper limits on olivine abundance for these areas using laboratory emissivity spectra of anorthite-forsterite mixtures acquired under lunar-like conditions. We find that these exposures have widely varying olivine content. In addition, after applying an albedo-based space weathering correction to the Diviner data, we find that none of the areas are unambiguously consistent with concentrations of forsterite exceeding 90 wt %, in contrast to the higher abundance estimates derived from VNIR data.

The Red Edge Problem in asteroid band parameter analysis

Meteoritics and Planetary Science 51 (2016) 806-817

SS Lindsay, TL Dunn, JP Emery, NE Bowles

© 2016 The Meteoritical Society. Near-infrared reflectance spectra of S-type asteroids contain two absorptions at 1 and 2 μm (band I and II) that are diagnostic of mineralogy. A parameterization of these two bands is frequently employed to determine the mineralogy of S(IV) asteroids through the use of ordinary chondrite calibration equations that link the mineralogy to band parameters. The most widely used calibration study uses a Band II terminal wavelength point (red edge) at 2.50 μm. However, due to the limitations of the NIR detectors on prominent telescopes used in asteroid research, spectral data for asteroids are typically only reliable out to 2.45 μm. We refer to this discrepancy as "The Red Edge Problem." In this report, we evaluate the associated errors for measured band area ratios (BAR = Area BII/BI) and calculated relative abundance measurements. We find that the Red Edge Problem is often not the dominant source of error for the observationally limited red edge set at 2.45 μm, but it frequently is for a red edge set at 2.40 μm. The error, however, is one sided and therefore systematic. As such, we provide equations to adjust measured BARs to values with a different red edge definition. We also provide new ol/(ol+px) calibration equations for red edges set at 2.40 and 2.45 μm.

A deep space inventory tour of the main asteroid belt

Proceedings of the International Astronautical Congress, IAC (2016)

A Gibbings, N Bowles, C Snodgrass, JP Sanchez, H Henning, A Braukhane

Copyright © 2016 by the author's organization All rights reserved. A consortium of international scientists and industry partners are proposing the Main Belt Inventory Mission as a candidate in the next forthcoming ESA medium class mission call. The inventory mission will characterise a broad range of statistically significant asteroid samples throughout the Main Asteroid Belt (MAB). A 0.5 m aperture space-based telescope will conduct a detailed spectroscopic survey, observing thousands of objects from a range of 0.1-0.5 AU, and perform basic flybys of pre-selected targets. Each flyby will target an asteroid of a different size, taxonomic (sub)classes and orbital families, where spatially resolved spectral mapping and spectroscopy will be performed. Smaller and fainter passing targets will also be discovered, through opportunistic science, with dedicated star tracker-like cameras. Examining the compositional diversity across the asteroid population will provide a key tracer to understanding the dynamic evolution of the solar system, offer an insight into its early history and the origins of life forming material. Furthermore, by combing visible, near-infrared and thermal spectroscopy, the mission will unlock information on the major rock forming minerals, hydrated minerals, organics and primitive material found throughout the asteroid belt. Coarse UV mapping capability will search for weak OH emission bands, providing evidence of buried volatile (water) reservoirs. This will provide an additional link to fully understanding the meteorite record on Earth, and more importantly, place the returned samples from the up-and-coming Hayabusa-2 (JAXA) and OSIRIS-REx (NASA) missions in a wider geological context. The mission will provide an accurate description of the present day MAB population, and further refinements of the origins and evolution models of Near Earth Asteroids. This paper will report on the scientific justification and focus on the (sub-)system spacecraft design to perform a detailed inventory mission of the MAB. It includes an evaluation of the different system options and architecture designs. The baseline design is then presented, and further broken down for each subsystem. The science and mission objectives have been developed within the scope of the expected boundary conditions of the forthcoming ESA medium class mission call. It therefore necessitates a high TRL spacecraft, ready for launch within the 2028/32 timeframe on either a Vega-C (or Ariane 6) launch vehicle. The mission and system design is currently being developed through an ongoing mission study. Analysis is performed by a consortium of OHB System AG, Cranfield University and an association of scientists from different institutes and organisations. Concurrent engineering techniques are used throughout.

Asteroid belt multiple fly-by options for m-class missions

Proceedings of the International Astronautical Congress, IAC (2016)

JPS Cuartielles, A Gibbings, C Snodgrass, S Green, N Bowles

The exploration of the asteroid main belt is of the utmost importance to address many of the fundamental questions in modern planetary science (e.g., Solar System formation and evolution theories). This paper investigates potential opportunities for medium-class asteroid belt survey missions in the timeframe of 2029+. The launch as assumed here corresponds to that of the forthcoming ESA call for medium class mission proposals. The study has been developed in support of the CASTAway Asteroid Spectroscopic Survey mission proposal, which is to be submitted to the aforementioned call. CASTAway envisages the launch of a small telescope with relatively straightforward (i.e. high TRL) remote sensing instrumentation to detect asteroids at a range of 0.1-0.5 AU. The spacecraft would then head towards the main belt with the following objectives: The mission should test Solar System evolution theories by; 1) performing a statistical survey of small asteroid belt objects previously unsampled (<1 to a few tens of metre-sized); 2) providing compositional information for 1000s of objects by obtaining spectral data over a wide range of wavelengths, including key regions not observable through the Earth's atmosphere; 3) studying the morphology and geological history from close flybys of a targeted sub-set of objects, at least doubling the number of currently visited main belt asteroids within one single mission (>9 fly-bys). This paper presents a challenging multi-objective optimization problem and discusses the feasibility of such a mission concept. Firstly, a set of competing performance indices are defined that consider the cost of the mission, the quality of the survey (i.e. number of new detections and spectral data) and the number of asteroid fly-bys. The fly-by combinatorial problem is then tackled using the Minimum Intersection Orbital Distance as an heuristic filter to prune out unfeasible targets. Genetic and evolutionary algorithms are used to globaly optimize impulsive transfers, considering also planetary fly-bys, deep space and Δv-leveraging manoeuvres. Low-thrust trajectories are considered, although long thrusting periods impact negatively in the available operational time for remote sensing operations. Shape-based methods are used to globally optimize the low thrust controls, while the GPOPS-II and IPOPT transcribe the continuous-time optimal control problem and solve the subsequent nonlinear programming problem, respectively.

The EChO payload instrument - an overview


P Eccleston, B Swinyard, M Tessenyi, G Tinetti, I Waldmann, M Ferlet, R Irshad, T Lim, K Middleton, T Bradshaw, M Crook, T Hunt, B Winter, I Bryson, N Bezawada, W Taylor, N Bowles, E Pascale, G Morgante, E Pace, A Adriani, J-M Reess, M Ollivier, R Ottensamer, M Rataj, G Ramos Zapata, J-R Schrader, A Selig, K Isaak, M Linder, L Puig

Exoplanet atmospheres with EChO: spectral retrievals using EChOSim


JK Barstow, NE Bowles, S Aigrain, LN Fletcher, PGJ Irwin, R Varley, E Pascale