Publications by Maximilian Abitbol


Rethinking CMB foregrounds: Systematic extension of foreground parametrizations

Monthly Notices of the Royal Astronomical Society 472 (2017) 1195-1213

J Chluba, JC Hill, M ABITBOL

© 2018 The Author(s). Future high-sensitivity measurements of the cosmic microwave background (CMB) anisotropies and energy spectrum will be limited by our understanding and modelling of foregrounds. Not only does more information need to be gathered and combined, but also novel approaches for the modelling of foregrounds, commensurate with the vast improvements in sensitivity, have to be explored. Here, we study the inevitable effects of spatial averaging on the spectral shapes of typical foreground components, introducing a moment approach, which naturally extends the list of foreground parameters that have to be determined through measurements or constrained by theoretical models. Foregrounds are thought of as a superposition of individual emitting volume elements along the line of sight and across the sky, which then are observed through an instrumental beam. The beam and line-of-sight averages are inevitable. Instead of assuming a specific model for the distributions of physical parameters, our method identifies natural new spectral shapes for each foreground component that can be used to extract parameter moments (e.g. mean, dispersion, cross terms, etc.). The method is illustrated for the superposition of power laws, free-free spectra, grey-body and modified blackbody spectra, but can be applied to more complicated fundamental spectral energy distributions. Here, we focus on intensity signals but the method can be extended to the case of polarized emission. The averaging process automatically produces scale-dependent spectral shapes and the moment method can be used to propagate the required information across scales in power spectrum estimates. The approach is not limited to applications to CMB foregrounds, but could also be useful for the modelling of X-ray emission in clusters of galaxies.


Show full publication list