One fish, two fish, red fish, blue fish

By Dr.Seuss

Onefish twofish

One fish, two fish, red fish, blue fish

The Riemann problem at infinite d.

A. Karch, H. C. Chang, I.Amado, C. Herzog. M. Spillane

The problem I want to consider is as follows:

The problem I want to consider is as follows:
inhomogenous

The problem I want to consider is as follows:

The problem I want to consider is as follows:

The evolution is governed by the dynamics of a conformal field theory:

$$
\partial_{\mu} T^{\mu \nu}=0 \quad T_{\mu}^{\mu}=0
$$

The problem I want to consider is as follows:

along tine

This configuration is an example of a non equilibrium steady state.

This configuration is an example of a non equilibrium steady state.

Bernard \& Doyon, 2012
Bhaseen et. al. 2013
H. -C. Chang, Karch \& AY et. al. 2013

Amado \& AY, 2015
Megias, 2015
PourHasan, 2015
Bachas, Skenderis \& Withers, 2015
Lucas et. al., 2015
Herzog \& Spillane, 2015
Herzog, Spillane, AY, 2016

Plan:

-Two dimensional systems
-Discussion of $d>2$

- Large d.

2d CFT's

2d CFT's

2d CFT's

2d CFT's

2d CFT's

2d CFT's

2d CFT's

2d CFT's

2d CFT's

In a conformal theory

$$
\partial_{\mu} T^{\mu \nu}=0 \quad T^{\mu}{ }_{\mu}=0
$$

2d CFT's

In a conformal theory

$$
\partial_{\mu} T^{\mu \nu}=0 \quad T_{\mu}^{\mu}=0
$$

Equivalently

$$
\partial_{t} T^{t t}=-\partial_{x} T^{t x} \quad \partial_{t} T^{t x}=-\partial_{x} T^{x x} \quad-T^{t t}+T^{x x}=0
$$

2d CFT's

In a conformal theory

$$
\partial_{t} T^{t t}=-\partial_{x} T^{t x} \quad \partial_{t} T^{t x}=-\partial_{x} T^{x x} \quad-T^{t t}+T^{x x}=0
$$

whose solution is

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

2d CFT's

In a conformal theory

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

The initial conditions imply that:

$$
T_{-}(u)=T_{+}(u), \quad 2 T_{+}(u)=T^{11}(t=0, x=u), \quad 0<u<L
$$

2d CFT's

In a conformal theory

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

The initial conditions imply that:

$$
T_{-}(u)=T_{+}(u), \quad 2 T_{+}(u)=T^{11}(t=0, x=u), \quad 0<u<L
$$

2d CFT's

In a conformal theory

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

The initial and boundary conditions imply that:

$$
\begin{aligned}
& T_{-}(u)=T_{+}(u), \quad 2 T_{+}(u)=T^{11}(t=0, x=u), \quad 0<u<L \\
& T_{-}(-u)+T_{+}(u)=P_{\text {left }}, \quad T_{-}(-u+L)+T_{+}(u+L)=P_{\text {right }}, \quad \forall u
\end{aligned}
$$

2d CFT's

We find:

$$
\begin{aligned}
& T_{+}(u)= \begin{cases}-n\left(P_{\text {left }}-P_{\text {right }}\right)+T_{+}\left(u_{0}\right) & u_{0}>0 \\
-(n-1)\left(P_{\text {left }}-P_{\text {right }}\right)+\left(P_{\text {right }}-T_{-}\left(-u_{0}\right)\right) & u_{0}<0\end{cases} \\
& T_{-}(u)= \begin{cases}-n\left(P_{\text {left }}-P_{\text {right }}\right)+T_{-}\left(u_{0}\right) & u_{0}>0 \\
-(n-1)\left(P_{\text {left }}-P_{\text {right }}\right)+\left(P n_{\text {right }}-T_{+}\left(-u_{0}\right)\right) & u_{0}<0\end{cases}
\end{aligned}
$$

where

$$
u=u_{0}+2 n L \quad-L<u_{0}<L \quad n \in \mathbb{Z}
$$

2d CFT's

We find:

$$
\begin{aligned}
& T_{+}(u)= \begin{cases}-n\left(P_{\text {left }}-P_{\text {right }}\right)+T_{+}\left(u_{0}\right) & u_{0}>0 \\
-(n-1)\left(P_{\text {left }}-P_{\text {right }}\right)+\left(P_{\text {right }}-T_{-}\left(-u_{0}\right)\right) & u_{0}<0\end{cases} \\
& T_{-}(u)= \begin{cases}-n\left(P_{\text {left }}-P_{\text {right }}\right)+T_{-}\left(u_{0}\right) & u_{0}>0 \\
-(n-1)\left(P_{\text {left }}-P_{\text {right }}\right)+\left(P n_{\text {right }}-T_{+}\left(-u_{0}\right)\right) & u_{0}<0\end{cases}
\end{aligned}
$$

where

$$
u=u_{0}+2 n L \quad-L<u_{0}<L \quad n \in \mathbb{Z}
$$

2d CFT's

We find:

$$
\begin{aligned}
& T_{+}(u)= \begin{cases}-n\left(P_{\text {left }}-P_{\text {right }}\right)+T_{+}\left(u_{0}\right) & u_{0}>0 \\
-(n-1)\left(P_{\text {left }}-P_{\text {right }}\right)+\left(P_{\text {right }}-T_{-}\left(-u_{0}\right)\right) & u_{0}<0\end{cases} \\
& T_{-}(u)= \begin{cases}-n\left(P_{\text {left }}-P_{\text {right }}\right)+T_{-}\left(u_{0}\right) & u_{0}>0 \\
-(n-1)\left(P_{\text {left }}-P_{\text {right }}\right)+\left(P n_{\text {right }}-T_{+}\left(-u_{0}\right)\right) & u_{0}<0\end{cases}
\end{aligned}
$$

where

$$
u=u_{0}+2 n L \quad-L<u_{0}<L \quad n \in \mathbb{Z}
$$

2d CFT's

2d CFT's

2d CFT's

2d CFT's

2d CFT's

2d CFT's

2d CFT's

2d CFT's

2d CFT's

2d CFT's

2d CFT's

If we set $\mathrm{L} \rightarrow \infty$, then in the finite $\mathrm{x}, \mathrm{t} \rightarrow \infty$ limit we expect to see a time independent steady state.

2d CFT's

Recall that in a conformal theory:

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

2d CFT's

Recall that in a conformal theory:

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

At $x=\infty$ we have the right heat bath

$$
T_{+}(\infty)+T_{-}(\infty)=P_{\text {right }}, \quad T_{-}(\infty)-T_{+}(\infty)=0
$$

2d CFT's

Recall that in a conformal theory:

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

At $x=\infty$ we have the right heat bath

$$
T_{+}(\infty)+T_{-}(\infty)=P_{\text {right }}, \quad T_{-}(\infty)-T_{+}(\infty)=0
$$

At $x=-\infty$ we have the left heat bath

$$
T_{+}(-\infty)+T_{-}(-\infty)=P_{\text {left }}, \quad T_{-}(-\infty)-T_{+}(-\infty)=0
$$

2d CFT's

Recall that in a conformal theory:

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

At $\mathrm{x}=\infty$ we have the right heat bath

$$
T_{+}(\infty)+T_{-}(\infty)=P_{\text {right }}, \quad T_{-}(\infty)-T_{+}(\infty)=0
$$

At $x=-\infty$ we have the left heat bath

$$
T_{+}(-\infty)+T_{-}(-\infty)=P_{\text {left }}, \quad T_{-}(-\infty)-T_{+}(-\infty)=0
$$

Therefore, at $\mathrm{t}=\infty$ we have

$$
\begin{aligned}
& T^{11}=T_{+}(\infty)+T_{-}(-\infty)=\frac{1}{2}\left(P_{\text {left }}+P_{\text {right }}\right) \\
& T^{01}=T_{-}(-\infty)-T_{+}(\infty)=\frac{1}{2}\left(P_{\text {left }}-P_{\text {right }}\right)
\end{aligned}
$$

2d CFT's

Recall that in a conformal theory:

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

At $\mathrm{x}=\infty$ we have the right heat bath

$$
T_{+}(\infty)+T_{-}(\infty)=P_{\text {right }}, \quad T_{-}(\infty)-T_{+}(\infty)=0
$$

At $x=-\infty$ we have the left heat bath

$$
T_{+}(-\infty)+T_{-}(-\infty)=P_{\text {left }}, \quad T_{-}(-\infty)-T_{+}(-\infty)=0
$$

Therefore, at $\mathrm{t}=\boldsymbol{\infty}$ we have (See also, Bermard and Doyon, 2012)

$$
\begin{aligned}
& T^{11}=T_{+}(\infty)+T_{-}(-\infty)=\frac{1}{2}\left(P_{\text {left }}+P_{\text {right }}\right), \\
& T^{01}=T_{-}(-\infty)-T_{+}(\infty)=\frac{1}{2}\left(P_{\text {left }}-P_{\text {right }}\right)
\end{aligned}
$$

2d CFT's

The exact same analysis can be used to consider more complicated configurations:

2d CFT's

The exact same analysis can be used to consider more complicated configurations:

2d CFT's

The exact same analysis can be used to consider more complicated configurations:

2d CFT's

The exact same analysis can be used to consider more complicated configurations:

2d CFT's

The exact same analysis can be used to consider more complicated configurations:

2d CFT's

The exact same analysis can be used to consider more complicated configurations:
$\xrightarrow[\substack{\text { 局 }}]{\beta_{\mathrm{R}}}$

$$
T^{01}(t \rightarrow \infty)=\frac{\pi}{12}\left(c_{-} T_{L}^{2}-c_{+} T_{R}^{2} \frac{1-\beta_{R}}{1+\beta_{R}}\right)+\frac{1}{2 \pi}\left(k_{-} \mu_{L}^{-}-k_{+} \mu_{R}^{+} \frac{1-\beta_{R}}{1+\beta_{R}}\right)
$$

$d>2$

Main ingredient:

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

It follows from:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

$d>2$

Main ingredient:

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

It follows from:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

Within our ansatz

$$
T^{\mu \nu}(t, x)=\left(\begin{array}{ccc}
T^{00} & T^{01} & 0 \\
T^{01} & T^{11} & 0 \\
0 & 0 & T_{\perp}
\end{array}\right)
$$

$d>2$

Main ingredient:

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

It follows from:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T_{\mu}^{\mu}=0
$$

Within our ansatz

$$
T^{\mu \nu}(t, x)=\left(\begin{array}{ccc}
T^{00} & T^{01} & 0 \\
T^{01} & T^{11} & 0 \\
0 & 0 & T_{\perp}
\end{array}\right)
$$

So for $d>2$ we have 4 components of the stress tensor but only three non trivial equations.

$d>2$

Main ingredient:

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

It follows from:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T_{\mu}^{\mu}=0
$$

Within our ansatz

$$
T^{\mu \nu}(t, x)=\left(\begin{array}{ccc}
T^{00} & T^{01} & 0 \\
T^{01} & T^{11} & 0 \\
0 & 0 & T_{\perp}
\end{array}\right)
$$

So for $d>2$ we have 4 components of the stress tensor but only three non trivial equations.

We need more input.

$$
d>2
$$

Main ingredient:

It follows from:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

Within our ansatz

$$
T^{\mu \nu}(t, x)=\left(\begin{array}{ccc}
T^{00} & T^{01} & 0 \\
T^{01} & T^{11} & 0 \\
0 & 0 & T_{\perp}
\end{array}\right)
$$

$d>2$

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T_{\mu}^{\mu}=0
$$

Within our ansatz

$$
T^{\mu \nu}(t, x)=\left(\begin{array}{ccc}
T_{00}^{00} & T^{01} & 0 \\
T^{01} & T^{11} & 0 \\
0 & 0 & T_{\perp}
\end{array}\right)
$$

Let us assume, in addition, that the system is described by a perfect inviscid fluid:

$$
T^{\mu \nu}=\epsilon(P) u^{\mu} u^{\nu}+\left(\eta^{\mu \nu}+u^{\mu} u^{\nu}\right) P
$$

$d>2$

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T_{\mu}^{\mu}=0
$$

Within our ansatz

$$
T^{\mu \nu}(t, x)=\left(\begin{array}{ccc}
T^{00} & T^{01} & 0 \\
T^{01} & T^{11} & 0 \\
0 & 0 & T_{\perp}
\end{array}\right)
$$

Let us assume, in addition, that the system is described by a perfect inviscid fluid:

$$
T^{\mu \nu}=\epsilon(P) u^{\mu} u^{\nu}+\left(\eta^{\mu \nu}+u^{\mu} u^{\nu}\right) P
$$

energy density

$d>2$

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T_{\mu}^{\mu}=0
$$

Within our ansatz

$$
T^{\mu \nu}(t, x)=\left(\begin{array}{ccc}
T_{00}^{00} & T^{01} & 0 \\
T^{01} & T^{11} & 0 \\
0 & 0 & T_{\perp}
\end{array}\right)
$$

Let us assume, in addition, that the system is described by a perfect inviscid fluid:

$d>2$

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T_{\mu}^{\mu}=0
$$

Within our ansatz

$$
T^{\mu \nu}(t, x)=\left(\begin{array}{ccc}
T_{00}^{00} & T^{01} & 0 \\
T^{01} & T^{11} & 0 \\
0 & 0 & T_{\perp}
\end{array}\right)
$$

Let us assume, in addition, that the system is described by a perfect inviscid fluid:

$d>2$

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T_{\mu}^{\mu}=0
$$

Let us assume, in addition, that the system is described by a perfect inviscid fluid:

$$
T^{\mu \nu}=\epsilon(P) u^{\mu} u^{\nu}+\left(\eta^{\mu \nu}+u^{\mu} u^{\nu}\right) P
$$

For a conformal field theory:

$$
\epsilon=(d-1) P
$$

$d>2$

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

Let us assume, in addition, that the system is described by a perfect inviscid fluid:

$$
T^{\mu \nu}=\frac{\epsilon}{d-1}\left(d u^{\mu} u^{\nu}+\eta^{\mu \nu}\right)
$$

$d>2$

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T_{\mu}^{\mu}=0
$$

Let us assume, in addition, that the system is described by a perfect inviscid fluid:

$$
T^{\mu \nu}=\frac{\epsilon}{d-1}\left(d u^{\mu} u^{\nu}+\eta^{\mu \nu}\right)
$$

The resulting system of non linear equations is still difficult to solve.

$d>2$

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

The resulting system of non linear equations is still difficult to solve.

Consider an ansatz

$$
\begin{aligned}
& T^{00}(x, t)=\left(T_{r}^{00}-T_{l}^{00}\right) \theta(x-s t)+T_{l}^{00} \\
& T^{01}(x, t)=\left(T_{r}^{01}-T_{l}^{01}\right) \theta(x-s t)+T_{l}^{01}
\end{aligned}
$$

$d>2$

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

The resulting system of non linear equations is still difficult to solve.

Consider an ansatz

$$
\begin{aligned}
& T^{00}(x, t)=\left(T_{r}^{00}-T_{l}^{00}\right) \theta(x-s t)+T_{l}^{00} \\
& T^{01}(x, t)=\left(T_{r}^{01}-T_{l}^{01}\right) \theta(x-s t)+T_{l}^{01}
\end{aligned}
$$

$d>2$

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

The resulting system of non linear equations is still difficult to solve.

Consider an ansatz

$$
\begin{aligned}
& T^{00}(x, t)=\left(T_{r}^{00}-T_{l}^{00}\right) \theta(x-s t)+T_{l}^{00} \\
& T^{01}(x, t)=\left(T_{r}^{01}-T_{l}^{01}\right) \theta(x-s t)+T_{l}^{01}
\end{aligned}
$$

$d>2$

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T_{\mu}^{\mu}=0
$$

The resulting system of non linear equations is still difficult to solve.

Consider an ansatz

$$
\begin{aligned}
& T^{00}(x, t)=\left(T_{r}^{00}-T_{l}^{00}\right) \theta(x-s t)+T_{l}^{00} \\
& T^{01}(x, t)=\left(T_{r}^{01}-T_{l}^{01}\right) \theta(x-s t)+T_{l}^{01}
\end{aligned}
$$

$d>2$

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

The resulting system of non linear equations is still difficult to solve.

Consider an ansatz

$$
\begin{aligned}
& T^{00}(x, t)=\left(T_{4}^{00}-T_{l}^{00}\right) \theta(x-s t)+T_{l}^{00} \\
& T^{01}(x, t)=\left(T_{r}^{01}-T_{l}^{01}\right) \theta(x-s t)+T_{l}^{01}
\end{aligned}
$$

$d>2$

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

The resulting system of non linear equations is still difficult to solve.

Consider an ansatz

$$
\begin{aligned}
& T^{00}(x, t)=\left(T_{r}^{00}-T_{l}^{00}\right) \theta(x-s t)+T_{l}^{00} \\
& T^{01}(x, t)=\left(T_{r}^{01}-T_{l}^{01}\right) \theta(x-s t)+T_{l}^{01}
\end{aligned}
$$

$d>2$

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T_{\mu}^{\mu}=0
$$

The resulting system of non linear equations is still difficult to solve.

Consider an ansatz

$$
\begin{aligned}
& T^{00}(x, t)=\left(T_{r}^{00}-T_{l}^{00}\right) \theta(x-s t)+T_{l}^{00} \\
& T^{01}(x, t)=\left(T_{r}^{01}-T_{l}^{01}\right) \theta(x-s t)+T_{l}^{01}
\end{aligned}
$$

We have a three parameter family of solutions.

$d>2$

We have a three parameter family of solutions.
For instance, let us fix T^{00}, and T^{01},

then the solution to the equations of motion will tell us $\mathrm{T}^{00}{ }_{r}(\mathrm{~s})$ and $\mathrm{T}^{01}{ }_{r}(\mathrm{~s})$ as a function of s .

$d>2$

We have a three parameter family of solutions.
For instance, let us fix T^{00}, and T^{01},

then the solution to the equations of motion will tell us $\mathrm{T}^{00}{ }_{r}(\mathrm{~s})$ and $\mathrm{T}^{01}{ }_{r}(\mathrm{~s})$ as a function of s .

Thus, if we specify $T^{00}, T^{01}, T^{00}{ }_{r}$ and $T^{01}{ }_{r}$ the problem will be overdetermined.

$$
d>2
$$

Thus, if we specify $T^{00}, T^{01}, T^{00}{ }_{r}$ and $T^{01}{ }_{r}$ the problem will be overdetermined.

But we can glue two solutions, e.g.,

$d>2$

But we can glue two solutions, e.g.,

The resulting steady state will be characterised by: $T_{*}^{00} T_{*}^{01}$

$d>2$

Let us move to a frame where $s=0$, we obtain, e.g.,

$d>2$

Let us move to a frame where $s=0$, we obtain, e.g.,

Kinetic energy
converted to heat

$d>2$

Let us move to a frame where $s=0$, we obtain, e.g.,

Kinetic energy
converted to heat

Heat converted to kinetic energy (?)

$d>2$

Let us move to a frame where $s=0$, we obtain, e.g.,
"Good" shocks

Kinetic energy
converted to heat

Heat converted to kinetic energy (?)

$d>2$

Let us move to a frame where $s=0$, we obtain, e.g.,

Kinetic energy
converted to heat
"Bad" shocks

Heat converted to kinetic energy (?)

$d>2$

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

The resulting system of non linear equations is still difficult to solve.

Consider another ansatz (rarefaction wave)

$$
\begin{aligned}
& T^{00}(x, t)=T^{00}(x / t) \\
& T^{01}(x, t)=T^{01}(x / t)
\end{aligned}
$$

$d>2$

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

The resulting system of non linear equations is still difficult to solve.

Consider another ansatz (rarefaction wave)

$$
\begin{aligned}
T^{00}(x, t) & =T^{00}(x / t) \\
T^{01}(x, t) & =T^{01}(x / t)
\end{aligned}
$$

Up to an overall rescaling, we have a three parameter family of solutions.

$d>2$

Let us move to a frame where $s=0$, we obtain, e.g.,

"Good" shocks

"Bad" shocks

$d>2$

Let us move to a frame where $s=0$, we obtain, e.g.,

"Good" shocks

Rarefaction waves

$d>2$

Let us move to a frame where $s=0$, we obtain, e.g.,

Rarefaction waves

So now, we have 4 possibilities:

$d>2$

Let us move to a frame where $s=0$, we obtain, e.g.,

Rarefaction waves

So now, we have 4 possibilities:

$d>2$

Let us move to a frame where $s=0$, we obtain, e.g.,

Rarefaction waves

So now, we have 4 possibilities:

$d>2$

So now, we have 4 possibilities:

$d>2$

So now, we have 4 possibilities:

$d>2$

$d>2$

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T_{\mu}^{\mu}=0
$$

Let us assume, in addition, that the system is described by a perfect inviscid fluid:

$$
T^{\mu \nu}=\frac{\epsilon}{d-1}\left(d u^{\mu} u^{\nu}+\eta^{\mu \nu}\right)
$$

$d>2$

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T_{\mu}^{\mu}=0
$$

Let us assume, in addition, that the system is described by a perfect inviscid fluid:

$$
T^{\mu \nu}=\frac{\epsilon}{d-1}\left(d u^{\mu} u^{\nu}+\eta^{\mu \nu}\right)
$$

$d>2$

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T_{\mu}^{\mu}=0
$$

Let us assume, in addition, that the system is described by a perfect inviscid fluid:

$$
T^{\mu \nu}=\frac{\epsilon}{d-1}\left(d u^{\mu} u^{\nu}+\eta^{\mu \nu}\right)
$$

- Are there other

 solutions?

$d>2$

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T_{\mu}^{\mu}=0
$$

Let us assume, in addition, that the system is described by a perfect inviscid fluid:

$$
T^{\mu \nu}=\frac{\epsilon}{d-1}\left(d u^{\mu} u^{\nu}+\eta^{\mu \nu}\right)
$$

- Are there other
 solutions?
- Is this corrected by viscosity?

$d>2$

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T_{\mu}^{\mu}=0
$$

Let us assume, in addition, that the system is described by a perfect inviscid fluid:

$$
T^{\mu \nu}=\frac{\epsilon}{d-1}\left(d u^{\mu} u^{\nu}+\eta^{\mu \nu}\right)
$$

- Are there other

 solutions?
- Is this corrected by viscosity?
- Is this correct?

Holography

Holography

Let us start by considering an equilibrated configuration

Holography

Let us start by considering an equilibrated configuration

A planar event horizon:

Holography

Let us start by considering an equilibrated configuration

A planar event horizon:

$$
d s^{2}=2 d t(d r-A(r) d t)+r^{2} d \vec{x}^{2}
$$

Holography

Let us start by considering an equilibrated configuration

A planar event horizon:

$$
\begin{aligned}
& d s^{2}=2 d t(d r-A(r) d t)+r^{2} d \vec{x}^{2} \\
& A(r)=r^{2}\left(1-\left(\frac{4 \pi T}{3 r}\right)^{3}\right)
\end{aligned}
$$

Holography

Let us start by considering an equilibrated configuration

A planar event horizon:

$$
P(T)=p_{0}\left(\frac{4 \pi T}{3}\right)^{3}
$$

$$
d s^{2}=2 d t(d r-A(r) d t)+r^{2} d \vec{x}^{2}
$$

$$
A(r)=r^{2}\left(1-\left(\frac{4 \pi T}{3 r}\right)^{3}\right)
$$

Holography

Let us start by considering an equilibrated configuration

A planar event horizon:

$$
P(T)=p_{0}\left(\frac{4 \pi T}{3}\right)^{3}
$$

$$
d s^{2}=2 d t(d r-A(r) d t)+r^{2} d \vec{x}^{2}
$$

$$
A(r)=r^{2}\left(1-\left(\frac{4 \pi T}{3 r}\right)^{3}\right)
$$

$$
p_{0}=\frac{2 N^{2}}{9 \sqrt{2 \lambda}} \quad \lambda=\frac{N}{k}
$$

Holography

Out of equilibrium we want to start with:

Holography

Out of equilibrium we want to start with:

$P\left(T_{L}\right)=p_{0}\left(\frac{4 \pi T_{L}}{3}\right)^{3}$

$$
P\left(T_{R}\right)=p_{0}\left(\frac{4 \pi T_{R}}{3}\right)^{3}
$$

Holography

Out of equilibrium we want to start with:

$$
P\left(T_{R}\right)=p_{0}\left(\frac{4 \pi T_{R}}{3}\right)^{3}
$$

A planar event horizon:

Holography

Out of equilibrium we want to start with:

A planar event horizon:

$$
\begin{aligned}
& d s^{2}=2 d t(d r-A(r, z) d t)+r^{2} d \vec{x}^{2} \\
& A(r, z)=r^{2}\left(1-\left(\frac{a_{1}(z)}{3 r}\right)^{3}\right)
\end{aligned}
$$

Holography

Out of equilibrium we want to start with:

$$
P\left(T_{L}\right)=p_{0}\left(\frac{4 \pi T_{L}}{3}\right)^{3}
$$

$$
P\left(T_{R}\right)=p_{0}\left(\frac{4 \pi T_{R}}{3}\right)^{3}
$$

A planar event horizon:

$$
\begin{aligned}
& d s^{2}=2 d t(d r-A(r, z) d t)+r^{2} d \vec{x}^{2} \\
& A(r, z)=r^{2}\left(1-\left(\frac{a_{1}(z)}{3 r}\right)^{3}\right) \\
& a_{1}(-\infty)=\frac{4 \pi T_{L}}{3}
\end{aligned}
$$

$$
a_{1}(\infty)=\frac{4 \pi T_{R}}{3}
$$

Holography

Out of equilibrium we want to start with:

$$
\begin{aligned}
& d s^{2}=2 d t(d r-A(r, z) d t)+r^{2} d \vec{x}^{2} \\
& A(r, z)=r^{2}\left(1-\left(\frac{a_{1}(z)}{3 r}\right)^{3}\right)
\end{aligned}
$$

Holography

Out of equilibrium we want to start with:

$$
\begin{aligned}
& d s^{2}=2 d t(d r-A(r, z) d t)+r^{2} d \vec{x}^{2} \\
& A(r, z)=r^{2}\left(1-\left(\frac{a_{1}(z)}{3 r}\right)^{3}\right)
\end{aligned}
$$

and evolve it forward in time

Holography

Out of equilibrium we want to start with:

$$
\begin{aligned}
& d s^{2}=2 d t(d r-A(r, z) d t)+r^{2} d \vec{x}^{2} \\
& A(r, z)=r^{2}\left(1-\left(\frac{a_{1}(z)}{3 r}\right)^{3}\right)
\end{aligned}
$$

and evolve it forward in time. Using

$$
d s^{2}=2 d t(d r-A(t, z, r) d t-F(t, z, r) d z)+\Sigma^{2}(t, r, z)\left(e^{B(t, z, r)} d x_{\perp}^{2}+e^{-B(t, z, r)} d z^{2}\right)
$$

the Einstein equations reduce to a set of nested linear differential equations in the radial coordinate ' r '.

Holography

Out of equilibrium we want to start with:

$$
\begin{aligned}
& d s^{2}=2 d t(d r-A(r, z) d t)+r^{2} d \vec{x}^{2} \\
& A(r, z)=r^{2}\left(1-\left(\frac{a_{1}(z)}{3 r}\right)^{3}\right)
\end{aligned}
$$

and evolve it forward in time. Using
$d s^{2}=2 d t(d r-A(t, z, r) d t-F(t, z, r) d z)+\Sigma^{2}(t, r, z)\left(e^{B(t, z, r)} d x_{\perp}^{2}+e^{-B(t, z, r)} d z^{2}\right)$
the Einstein equations reduce to a set of nested linear differential equations in the radial coordinate ' r '. We have solved these equations numerically.

Holography

Holography

We find:

Holography

We find:

Holography

We find:

Holography

We find:

Holography

We find:

Holography

We find:

Infinite d

Infinite d

If we send d to infinity the difference between the solutions becomes prominent.

Infinite d

If we send d to infinity the difference between the solutions becomes prominent.
For the ideal inviscid fluid,

$$
T^{\mu \nu}=\frac{\epsilon}{d-1}\left(d u^{\mu} u^{\nu}+\eta^{\mu \nu}\right)
$$

Infinite d

If we send d to infinity the difference between the solutions becomes prominent.
For the ideal inviscid fluid,

$$
T^{\mu \nu}=\frac{\epsilon}{d-1}\left(d u^{\mu} u^{\nu}+\eta^{\mu \nu}\right)
$$

with the scaling:

$$
\begin{array}{ll}
\epsilon=\mathcal{O}\left(d^{0}\right) \quad & x=\frac{\chi}{\sqrt{d}}=\mathcal{O}(1 / \sqrt{d}) \\
x_{\perp}=\frac{\chi \perp}{d}=\mathcal{O}(1 / \sqrt{d}) \quad v=\frac{\beta}{\sqrt{d}}=\mathcal{O}(1 / \sqrt{d})
\end{array}
$$

Infinite d

If we send d to infinity the difference between the solutions becomes prominent.
For the ideal inviscid fluid,

$$
T^{\mu \nu}=\frac{\epsilon}{d-1}\left(d u^{\mu} u^{\nu}+\eta^{\mu \nu}\right)
$$

with the scaling:

$$
\begin{array}{ll}
\epsilon=\mathcal{O}\left(d^{0}\right) \quad x=\frac{\chi}{\sqrt{d}}=\mathcal{O}(1 / \sqrt{d}) \\
x_{\perp}=\frac{\chi \perp}{d}=\mathcal{O}(1 / \sqrt{d}) \quad v=\frac{\beta}{\sqrt{d}}=\mathcal{O}(1 / \sqrt{d})
\end{array}
$$

one finds ($e=\epsilon, j=\epsilon \beta$)

$$
T^{\mu \nu}=\left(\begin{array}{cc}
e & j \\
j & e+\frac{j^{2}}{e}
\end{array}\right)
$$

Infinite d

If we send d to infinity the difference between the solutions becomes prominent.
one finds ($e=\epsilon, j=\epsilon \beta$)

$$
T^{\mu \nu}=\left(\begin{array}{cc}
e & j \\
j & e+\frac{j^{2}}{e}
\end{array}\right)
$$

Consider

$$
\begin{aligned}
e(\chi, t) & =\left(e_{r}-e_{l}\right) \theta(x-s t)+e_{l} \\
j(\chi, t) & =\left(j_{r}-j_{l}\right) \theta(x-s t)+j_{l}
\end{aligned}
$$

Infinite d

If we send d to infinity the difference between the solutions becomes prominent.
One finds

$$
T^{\mu \nu}=\left(\begin{array}{cc}
e & j \\
j & e+\frac{j^{2}}{e}
\end{array}\right)
$$

Consider

$$
\begin{aligned}
e(\chi, t) & =\left(e_{r}-e_{l}\right) \theta(x-s t)+e_{l} \\
j(\chi, t) & =\left(j_{r}-j_{l}\right) \theta(x-s t)+j_{l}
\end{aligned}
$$

Infinite d

If we send d to infinity the difference between the solutions becomes prominent.
One finds

$$
T^{\mu \nu}=\left(\begin{array}{cc}
e & j \\
j & e+\frac{j^{2}}{e}
\end{array}\right)
$$

Consider

$$
\begin{aligned}
e(\chi, t) & =\left(e_{r}-e_{l}\right) \theta(x-s t)+e_{l} \\
j(\chi, t) & =\left(j_{r}-j_{l}\right) \theta(x-s t)+j_{l}
\end{aligned}
$$

If we choose a reference frame with $j_{l}=0$

Infinite d

If we send d to infinity the difference between the solutions becomes prominent.
One finds

$$
T^{\mu \nu}=\left(\begin{array}{cc}
e & j \\
j & e+\frac{j^{2}}{e}
\end{array}\right)
$$

Consider

$$
\begin{aligned}
e(\chi, t) & =\left(e_{r}-e_{l}\right) \theta(x-s t)+e_{l} \\
j(\chi, t) & =\left(j_{r}-j_{l}\right) \theta(x-s t)+j_{l}
\end{aligned}
$$

If we choose a reference frame with $j_{l}=0$ and scale the energy so that $e_{l}=1$

Infinite d

Consider

$$
\begin{aligned}
e(\chi, t) & =\left(e_{r}-e_{l}\right) \theta(x-s t)+e_{l} \\
j(\chi, t) & =\left(j_{r}-j_{l}\right) \theta(x-s t)+j_{l}
\end{aligned}
$$

If we choose a reference frame with $j_{l}=0$ and scale the energy so that $e_{l}=1$
then we have a one parameter family of solutions
$e_{r}(s) \quad j_{r}(s)$

Infinite d

Consider

$$
\begin{aligned}
e(\chi, t) & =\left(e_{r}-e_{l}\right) \theta(x-s t)+e_{l} \\
j(\chi, t) & =\left(j_{r}-j_{l}\right) \theta(x-s t)+j_{l}
\end{aligned}
$$

If we choose a reference frame with $j_{l}=0$ and scale the energy so that $e_{l}=1$
then we have a one parameter family of solutions
$e_{r}(s) \quad j_{r}(s)$

Infinite d

Infinite d

Infinite d

Infinite d

Infinite d

If we send d to infinity the difference between the solutions becomes prominent.
One finds

$$
T^{\mu \nu}=\left(\begin{array}{cc}
e & j \\
j & e+\frac{j^{2}}{e}
\end{array}\right)
$$

Consider

$$
\begin{aligned}
e(\chi, t) & =e(\chi / t) \\
j(\chi, t) & =j(\chi / t)
\end{aligned}
$$

with $j_{l}=0$ and $e_{l}=1$

Infinite d

Infinite d

Infinite d

"bad shocks"

"good shocks"

Infinite d

Infinite d

Infinite d

We can fix instead the right asymptotic: $\quad e_{r}=1 \quad j_{r}=0$

Infinite d
Or:

Infinite d
Or:

Infinite d
Or:

Infinite d

We can now glue solutions like we did before:

Infinite d

We can now glue solutions like we did before:

Infinite d

We can now glue solutions like we did before:

Infinite d

We can now glue solutions like we did before:

Infinite d

We can now glue solutions like we did before:

Infinite d

We can now glue solutions like we did before:

Infinite d

We can now glue solutions like we did before:

Infinite d

We can now glue solutions like we did before:

Infinite d

We can now glue solutions like we did before:

Infinite d

We can now glue solutions like we did before:

Infinite d

We can now glue solutions like we did before:

Infinite d

We can now glue solutions like we did before:

Infinite d

We can now glue solutions like we did before:

Infinite d

We can now glue solutions like we did before:

Infinite d

We can now glue solutions like we did before:

Infinite d

We obtain a "phase" diagram,

Holography

Holography

Out of equilibrium we would like to solve the equations of motion for:

$$
d s^{2}=d t\left(2 d r-g_{t t} d t-2 g_{t \chi} d \chi\right)+g_{\chi \chi} d \chi^{2}+g_{\perp \perp} d \chi_{\perp}^{2}
$$

Holography

Out of equilibrium we would like to solve the equations of motion for:

$$
d s^{2}=d t\left(2 d r-g_{t t} d t-2 g_{t \chi} d \chi\right)+g_{\chi \chi} d \chi^{2}+g_{\perp \perp} d \chi_{\perp}^{2}
$$

with

$$
\begin{aligned}
& g_{t t}=\mathcal{O}\left(d^{0}\right) \quad g_{\chi \chi}=\mathcal{O}\left(d^{-1}\right) \\
& g_{t \chi}=\mathcal{O}\left(d^{-1}\right) \quad g_{\perp \perp}=\mathcal{O}\left(d^{-1}\right)
\end{aligned}
$$

Holography

Out of equilibrium we would like to solve the equations of motion for:

$$
d s^{2}=d t\left(2 d r-g_{t t} d t-2 g_{t \chi} d \chi\right)+g_{\chi \chi} d \chi^{2}+g_{\perp \perp} d \chi_{\perp}^{2}
$$

with

$$
\begin{aligned}
& g_{t t}=\mathcal{O}\left(d^{0}\right) \quad g_{\chi \chi}=\mathcal{O}\left(d^{-1}\right) \\
& g_{t \chi}=\mathcal{O}\left(d^{-1}\right) \quad g_{\perp \perp}=\mathcal{O}\left(d^{-1}\right)
\end{aligned}
$$

and

$$
R=r^{d}
$$

Holography

Out of equilibrium we would like to solve the equations of motion for:

$$
d s^{2}=d t\left(2 d r-g_{t t} d t-2 g_{t \chi} d \chi\right)+g_{\chi \chi} d \chi^{2}+g_{\perp \perp} d \chi_{\perp}^{2}
$$

with

$$
\begin{aligned}
& g_{t t}=\mathcal{O}\left(d^{0}\right) \quad g_{\chi \chi}=\mathcal{O}\left(d^{-1}\right) \\
& g_{t \chi}=\mathcal{O}\left(d^{-1}\right) \quad g_{\perp \perp}=\mathcal{O}\left(d^{-1}\right)
\end{aligned}
$$

and

$$
R=r^{d}
$$

Holography

Out of equilibrium we would like to solve the equations of motion for:

$$
d s^{2}=d t\left(2 d r-g_{t t} d t-2 g_{t \chi} d \chi\right)+g_{\chi \chi} d \chi^{2}+g_{\perp \perp} d \chi_{\perp}^{2}
$$

one finds

$$
\begin{array}{ll}
\frac{g_{t t}}{r^{2}}=1-\frac{e}{R}+\mathcal{O}\left(d^{-1}\right) & g_{t \chi}=\frac{j}{d R}+\mathcal{O}\left(d^{-2}\right) \\
\frac{g_{\chi \chi}}{r^{2}}=\frac{1}{d}+\mathcal{O}\left(d^{-2}\right) & \frac{g_{\perp \perp}}{r^{2}}=\frac{1}{d}+\mathcal{O}\left(d^{-3}\right)
\end{array}
$$

where:

$$
\partial_{t} e-\partial_{\chi}^{2} e=-\partial_{\chi} j \quad \partial_{t} j-\partial_{\chi}^{2} j=-\partial_{\chi}\left(\frac{j^{2}}{e}+e\right)
$$

Holography

Out of equilibrium we would like to solve the equations of motion for:

$$
d s^{2}=d t\left(2 d r-g_{t t} d t-2 g_{t \chi} d \chi\right)+g_{\chi \chi} d \chi^{2}+g_{\perp \perp} d \chi_{\perp}^{2}
$$

one finds

$$
\frac{g_{t t}}{r^{2}}=1-\frac{e}{R}+\mathcal{O}\left(d^{-1}\right) \quad g_{t \chi}=\frac{j}{d R}+\mathcal{O}\left(d^{-2}\right)
$$

where:

$$
\partial_{t} e-\partial_{\chi}^{2} e=-\partial_{\chi} j \quad \partial_{t} j-\partial_{\chi}^{2} j=-\partial_{\chi}\left(\frac{j^{2}}{e}+e\right)
$$

which come from a conservation of

$$
T^{\mu \nu}=\left(\begin{array}{cc}
e & j-\partial_{\chi} e \\
j-\partial_{\chi} e & e+\frac{j^{2}}{e}-2 \partial_{\chi} j+\partial_{\chi}^{2} e
\end{array}\right)+\left(\begin{array}{cc}
\partial_{\chi}^{2} g & -\partial_{\chi} \partial_{t} g \\
-\partial_{\chi} \partial_{t} g & \partial_{t}^{2} g
\end{array}\right)
$$

Holography

one finds

$$
\partial_{t} e-\partial_{\chi}^{2} e=-\partial_{\chi} j \quad \partial_{t} j-\partial_{\chi}^{2} j=-\partial_{\chi}\left(\frac{j^{2}}{e}+e\right)
$$

which come from a conservation of

$$
T^{\mu \nu}=\left(\begin{array}{cc}
e & j-\partial_{\chi} e \\
j-\partial_{\chi} e & e+\frac{j^{2}}{e}-2 \partial_{\chi} j+\partial_{\chi}^{2} e
\end{array}\right)+\left(\begin{array}{cc}
\partial_{\chi}^{2} g & -\partial_{\chi} \partial_{t} g \\
-\partial_{\chi} \partial_{t} g & \partial_{t}^{2} g
\end{array}\right)
$$

Holography

one finds

$$
\partial_{t} e-\partial_{\chi}^{2} e=-\partial_{\chi} j \quad \partial_{t} j-\partial_{\chi}^{2} j=-\partial_{\chi}\left(\frac{j^{2}}{e}+e\right)
$$

which come from a conservation of

$$
T^{\mu \nu}=\left(\begin{array}{cc}
& e \\
j & e+\frac{j^{2}}{e}
\end{array}\right)
$$

Holography

one finds

$$
\partial_{t} e-\partial_{\chi}^{2} e=-\partial_{\chi} j \quad \partial_{t} j-\partial_{\chi}^{2} j=-\partial_{\chi}\left(\frac{j^{2}}{e}+e\right)
$$

which come from a conservation of

$$
T^{\mu \nu}=\left(\begin{array}{cc}
e & j-\partial_{\chi} e \\
j-\partial_{\chi} e & e+\frac{j^{2}}{e}-2 \partial_{\chi} j+\partial_{\chi}^{2} e
\end{array}\right)+\left(\begin{array}{cc}
\partial_{\chi}^{2} g & -\partial_{\chi} \partial_{t} g \\
-\partial_{\chi} \partial_{t} g & \partial_{t}^{2} g
\end{array}\right)
$$

Holography

one finds

$$
\partial_{t} e-\partial_{\chi}^{2} e=-\partial_{\chi} j \quad \partial_{t} j-\partial_{\chi}^{2} j=-\partial_{\chi}\left(\frac{j^{2}}{e}+e\right)
$$

which come from a conservation of

$$
T^{\mu \nu}=\left(\begin{array}{cc}
e & j-\partial_{\chi} e \\
j-\partial_{\chi} e & e+\frac{j^{2}}{e}-2 \partial_{\chi} j+\partial_{\chi}^{2} e
\end{array}\right)+\left(\begin{array}{cc}
\partial_{\chi}^{2} g & -\partial_{\chi} \partial_{t} g \\
-\partial_{\chi} \partial_{t} g & \partial_{t}^{2} g
\end{array}\right)
$$

This is compatible with

$$
\frac{\eta}{s}=\frac{1}{4 \pi}
$$

Holography

one finds

$$
\partial_{t} e-\partial_{\chi}^{2} e=-\partial_{\chi} j \quad \partial_{t} j-\partial_{\chi}^{2} j=-\partial_{\chi}\left(\frac{j^{2}}{e}+e\right)
$$

which come from a conservation of

$$
T^{\mu \nu}=\left(\begin{array}{cc}
e & j-\partial_{\chi} e \\
j-\partial_{\chi} e & e+\frac{j^{2}}{e}-2 \partial_{\chi} j+\partial_{\chi}^{2} e
\end{array}\right)+\left(\begin{array}{cc}
\partial_{\chi}^{2} g & -\partial_{\chi} \partial_{t} g \\
-\partial_{\chi} \partial_{t} g & \partial_{t}^{2} g
\end{array}\right)
$$

This is compatible with

$$
\frac{\eta}{s}=\frac{1}{4 \pi} \quad \tau_{0}=\frac{1}{2}
$$

once ' g ' is chosen appropriately

Holography

one finds

$$
\partial_{t} e-\partial_{\chi}^{2}=-\partial_{\chi} j \quad \partial_{t} j-\partial_{\chi}^{2} j=-\partial_{\chi}\left(\frac{j^{2}}{e}+e\right)
$$

which come from a conservation of

$$
T^{\mu \nu}=\left(\begin{array}{cc}
e & j-\partial_{\chi} e \\
j-\partial_{\chi} e & e+\frac{j^{2}}{e}-2 \partial_{\chi} j+\partial_{\chi}^{2} e
\end{array}\right)+\left(\begin{array}{cc}
\partial_{\chi}^{2} g & -\partial_{\chi} \partial_{t} g \\
-\partial_{\chi} \partial_{t} g & \partial_{t}^{2} g
\end{array}\right)
$$

This is compatible with

$$
\frac{\eta}{s}=\frac{1}{4 \pi} \quad \tau_{0}=\frac{1}{2}
$$

once ' g ' is chosen appropriately

Holography

EOM's are exactly first order in
one finds

$$
\partial_{t} e-\partial_{\chi}^{2}=-\partial_{\chi} j \quad \partial_{t} j-\partial_{\chi}^{2}=-\partial_{\chi}\left(\frac{j^{2}}{e}+e\right)
$$

which come from a conservation of

$$
T^{\mu \nu}=\left(\begin{array}{cc}
e & j-\partial_{\chi} e \\
j-\partial_{\chi} e & e+\frac{j^{2}}{e}-2 \partial_{\chi} j+\partial_{\chi}^{2} e
\end{array}\right)+\left(\begin{array}{cc}
\partial_{\chi}^{2} g & -\partial_{\chi} \partial_{t} g \\
-\partial_{\chi} \partial_{t} g & \partial_{t}^{2} g
\end{array}\right)
$$

This is compatible with

$$
\frac{\eta}{s}=\frac{1}{4 \pi} \quad \tau_{0}=\frac{1}{2}
$$

once ' g ' is chosen appropriately

Holography

EOM's are exactly first order in
one finds

$$
\partial_{t} e-\partial_{\chi}^{2} \Leftrightarrow=-\partial_{\chi} j \quad \partial_{t} j-\partial_{\chi}^{2} j=-\partial_{\chi}\left(\frac{j^{2}}{e}+e\right)
$$

which come from a conservation of

$$
T^{\mu \nu}=\left(\begin{array}{cc}
e & j-\partial_{\chi} e \\
j-\partial_{\chi} e & e+\frac{j^{2}}{e}-2 \partial_{\chi} j+\partial_{\chi}^{2} e
\end{array}\right)+\left(\begin{array}{cc}
\partial_{\chi}^{2} g & -\partial_{\chi} \partial_{t} g \\
-\partial_{\chi} \partial_{t} g & \partial_{t}^{2} g
\end{array}\right)
$$

This is compatible with
Stress tensor is

$$
\frac{\eta}{s}=\frac{1}{4 \pi} \quad \tau_{0}=\frac{1}{2} \longleftarrow \text { second order }
$$

once ' g ' is chosen appropriately

Holography

Holography

Summary

Summary

In a 2d CFT we find

$$
\begin{aligned}
& T^{00}=T_{+}(\infty)+T_{-}(-\infty)=\frac{1}{2}\left(P_{\text {left }}+P_{\text {right }}\right), \\
& T^{01}=T_{-}(-\infty)-T_{+}(\infty)=\frac{1}{2}\left(P_{\text {left }}-P_{\text {right }}\right)
\end{aligned}
$$

$d>2$

We have 4 possibilities:

Thank you

