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The Riemann problem 
at infinite d.

A. Karch, H. C. Chang, I. Amado, C. Herzog. M. Spillane 
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The evolution is governed by the dynamics of a 
conformal field theory:
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If we set L→∞, then in the finite x, t→∞ limit we expect 
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e.g., in ABJM
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the Einstein equations reduce to a set of nested linear 
differential equations in the radial coordinate ‘r’. We 
have solved these equations numerically.
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(Chesler, Yaffe, 2012)
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If we send d to infinity the difference between the 
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e(�, t) = e(�/t)
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Holography

(Emparan, Suzuki, Tanabe, 2015 (see also Bhattacharyya et. al. 2015))
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In a 2d CFT we find

T 00 = T+(1) + T�(�1) =
1
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⇣
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⌘
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T 01 = T�(�1)� T+(1) =
1
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⇣
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