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The evolution is governed by the dynamics of a
conformal field theory:
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In 2 conformal theory

T _ <T+(t+a:) +T (—t+z) T_(—t+z)—TL(t+ x))
C\T(—t4+x)—Ty(t+=x) Ti(t+z)+T_(—t+x)

The initial and boundary conditions imply that:

T (u) =Ty (uw), 2T (u)=T"*(t=0,2=mu), 0<u<L
T_(—u) + T4 (u) = Pegy» T-(—u+L)+ T (u+ L) = Pyygpy, Y



2d CFT’s

Pright
X
1 | o
0 L
t
We find:
Ty (u) = < —n(Pleft — Pright) + T (uo) ug > 0
\—(n — 1)(Pleft, — Pright) + (Pright —T_(—up)) wup <0
T_(u) = < —n(Pleft, — Pright) + 1" (uo) ug > 0
\_(n — 1)(Pleft — Pright) + (Pnright — Ty (—up)) uo <0
where

u = ug + 2nL —L <ug <L n e 4



2d CFT’s

Pright
X
| I —
0
t
We find:
(_n(Pleft — Pright) + T4 (uo) uo > 0
T = < g
T (u) = <(_n(Pleft - Pright) + 1" (uo) ug > 0
\_(n — 1)(Pleft — Pright) + (Pnright — T+(—u0)) Uug < 0
where

U = ug + 2nL —L <wug< L =/



where

u = ug + 2nL

’

\

\

2d CFT’s

—n(Plefy — Pr1ght) + Ty (uo) ug > 0
—(n = 1)(Pleg;, — rlght) + (P, right — T_(—uo)) wup <0
)
—n(Plefy — Prlght) + T (up) up > 0
—(n = 1)(Pleg, — rlght) + (Pn Nright — Ty (—uo)) wo <0
—L <up< L n € /4




2d CFT’s

11 701
f ‘ t/L= 0.00
Ploft gz === mm e -
) t/L= 0.00
Pright """"""""""
= X = i



2d CFT’s

11 701
f ‘ t/L= 0.00
Ploft gz === mm e -
) t/L= 0.00
Pright """"""""""
= X = i



2d CFT’s

0
s
NS




2d CFT’s

RN
OO
RIS
NSO Eo TSN TN T
NSeosesess.




1

2d CFT’s |

!

Pleft

>
SN

GG
N0, D% e
R OO

s}g’:‘o..o:‘x\
&

/\




N
N

T s
A <
R
N

&

a4

2d CFT’s |

!

1

Pleft




2d CFT’s

!

1

Pleft

\"VQ N/
N L
NN

‘,_ -

Vi v'\\.:;”s’““sl

SN 0 %
RELLES RN

, “0

R S OIS -
’0’0‘0 TN 0 - -

0 ’%\. i

t R

/\




-
N

N
NN
G
R ' ' “' 7
W

2d CFT’s |

!

1

Pleft




1

2d CFT’s |

Pleft




1

2d CFT’s |

Pleft




2d CFT’s |

1

Pleft




2d CFT’s

RN
OO
RIS
NSO Eo TSN TN T
NSeosesess.




2d CFT’s

000 ..

U=

X

—

4 L



X

—

4 L

> X

4L

2d CFT’s

‘Q\W&««
LSS50

“_ul so%ooos\v‘ -
«0000’000“-"
LX) 9.

t/L= 0.00




2d CFT’s

If we set L— 00, then in the finite x, t— 00 |imit we expect
to see a time independent steady state.
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Recall that in a conformal theory:

T _ <T+(t+:v) +T (—t+x) T_(—t+z)—Ty(t+ a;))
T \T(—t+2)-T.(t+z) Ti(t+z)+T_(—t+2x)

At x=00 we have the right heat bath

Ty (00) + T-(00) = Prigpg . T-(00) — Ty (00) = 0
At x=-00 we have the left heat bath

T.(~00) + T_(~00) = Pefy, T (—00) — Ts(~00) = 0
Therefore, at t=00 we have
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Recall that in a conformal theory:

T _ <T+(t+:v) +T (—t+x) T_(—t+z)—Ty(t+ a;))
T \T(—t+2)-T.(t+z) Ti(t+z)+T_(—t+2x)

At x=00 we have the right heat bath
Ty (00) + T-(00) = Pright»  T-(00) — T4 (00) = 0
At x=-00 we have the left heat bath
T.(~00) + T_(~00) = Piogy, T-(—00) — T (~00) = 0

Therefor'e, at =00 we ha_ve (See also, Bernard and Doyon, 2012)

1
T =T1(c0) + T_(—00) = 5 (Pleft + Pright) »

1
% =T (—00) — T} (00) = 5 (Pleft - Pright)
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tensor but only three non trivial equations.
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T _ <T+(t+:v) +T (—t+x) T_(—t+z)—Ty(t+ x))
T \T(—t+2)-T.(t+z) Ti(t+z)+T_(—t+2x)

It follows from:
0,T" =0, TH,=0
Within our ansatz

TOO TOl 0
T (t,x) = | T°Y T 0
0 0O 1)

So for d>2 we have 4 components of the stress
tensor but only three non trivial equations.

We need more input.
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Energy momentum conservation and conformal
invariance imply:
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TOO TOl 0
T (t,x) = [TY TY 0
0 0 1

Let us assume, in addition, that the system is
described by a perfect inviscid fluid:

T =e(P)ufu” + (""" + uHu”) P
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d>2

Energy momentum conservation and conformal
invariance imply:

9, T" =0, T', =0

Within our ansatz

TOO TOl 0
T (t,x) = [TY TY 0
0 0 1

Let us assume, in addition, that the system is
described by a perfect inviscid fluid:

T =e(P)ufu” + (""" + uu”)P

VA \

energy density  4-velocity = Pressure
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Energy momentum conservation and conformal
invariance imply:

9,T" =0, T', =0
Let us assume, in addition, that the system is
described by a perfect inviscid fluid:

TH = e(P)utu” + (0" + u'u”) P
For a conformal field theory:

e=(d—1)P
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described by a perfect inviscid fluid:
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We have a three parameter family of solutions.

For instance, let us fix T%, and TY!,,

y OO 4 TOI

00 01
Crl S Crl S 01
|_> T90(s) '—» T."(s)

then the solution to the equations of motion will tell us
T%,.(s) and T°'.(s) as a function of s.

Thus, if we specify T, T, T, and T%, the problem
will be overdetermined.
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But we can glue two solutions, e.g.,

A TOO

00
15 —

= 17 sL +
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The resulting steady state will be characterised by: 7,° 7.
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Energy momentum conservation and conformal
invariance imply:

0,T" =0, TH, =0

The resulting system of non linear equations is still
difficult to solve.

Consider another ansatz (rarefaction wave)
T (z,t) = T (z/t)

TV (z,t) = T (z/t)
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Energy momentum conservation and conformal
invariance imply:

0,T" =0, TH, =0

The resulting system of non linear equations is still
difficult to solve.

Consider another ansatz (rarefaction wave)
T (z,t) = T (z/t)
TV (z,t) = T (z/t)

Up to an overall rescaling, we have a three parameter
family of solutions.
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Energy momentum conservation and conformal
invariance imply:
0,T" =0, T",=0
Let us assume, in addition, that the system is
described by a perfect inviscid fluid:

THY = di ; (dutu” + nH")

17’ TP’
® Are there other _"LI— Ty _'l\ T

solutions?

® |s this corrected by “L_
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viscosity? T3 750
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Let us start by considering an equilibrated
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Holography

Let us start by considering an equilibrated
configuration

= «——> A

A planar event horizon:

P(T) = p <47TT)3 ds® = 2dt (dr — A(r)dt) + r2dz>
p— 0 _—
3
ArT\ "
e.g.,in ABJM Alr) =17 (1‘ ( ES ) )
2N?

A\ =

=| =
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Out of equilibrium we want to start with:
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Out of equilibrium we want to start with:
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and evolve it forward in time
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Out of equilibrium we want to start with:

ds® = 2dt (dr — A(r, 2)dt) + r*dz?

A(r, z) =1 (1 — (“13(:>)3>

and evolve it forward in time. Using

ds® = 2dt(dr — A(t, z,r)dt — F(t,z,r)dz) + X*(t,r, 2) (eB(t’Z’T)d:IJi + e_B(t’Z’T)dz2)

the Einstein equations reduce to a set of nested linear
differential equations in the radial coordinate ‘r’.



Holography

Out of equilibrium we want to start with:

ds® = 2dt (dr — A(r, 2)dt) + r*dz?

A(r, z) =1 (1 — (“13(:>)3>

and evolve it forward in time. Using

ds® = 2dt(dr — A(t, z,r)dt — F(t,z,r)dz) + X*(t,r, 2) (eB(t’Z’T)d:IJi + e_B(t’Z’T)d%)

the Einstein equations reduce to a set of nested linear
differential equations in the radial coordinate ‘r’.We

have solved these equations numerically.
(Chesler, Yaffe, 2012)
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THY = dil (dutu” + ")

with the scaling:
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Consider
e(x,t) = (e, —e;)0(x — st) + ¢
JOxt) = (Gr — J1)0(x — st) + ji
If we choose a reference frame with 71 =0

and scale the energy so that ¢ =1

then we have a one parameter family of solutions

e,

er(s)  Jr(s)
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If we send d to infinity the difference between the
solutions becomes prominent.

One finds

Consider
e(x,t) = e(x/t)
jlx,t) = j(x/t)

with 7, =0 and ¢ =
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We can fix instead the right asymptotic: e =1 J- =0
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Holography

Out of equilibrium we would like to solve the
equations of motion for:

ds? = dt(2dr — gudt — 291, dX) + Gy dX> + g1 1 dX>

with
gt = O(do) Ixx — O(d_l)

giy = O0d™")  g1L1 = O(d™)

and

R = r®

(Emparan, Suzuki, Tanabe, 2015 (see also Bhattacharyya et. al. 2015))
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Out of equilibrium we would like to solve the
equations of motion for:

ds? = dt(2dr — gudt — 291, dX) + Gy dX> + g1 1 dX>

one finds
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Holography

first order in
one ﬁnds / derivatives
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Summary

In 2 2d CFT we find

T = T} (o0) +T-(—00) = (Pleft + B 1ght) )

(P left — P rlght)

mlr—\wlr—\

T =T (—o00) — T (00) =
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We have 4 possibilities:
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