

Scale Invariance and Quantum Hydrodynamics in Expanding Strongly Interacting Fermi Gases

John E. Thomas NC State University

JETLab Group

J.E. Thomas

Graduate Students:	Support:	Research Scholars:
Ethan Elliot	ARO	James Joseph
Willie Ong	NSF	Ilya Arakelian
Chingyun Cheng	DOE	-
Arun Jaganathan	AFOSR	
Nithya Arunkumar		
Jayampathi Kangara		
Lorin Baird		

Outline

- Introduction: Optically trapped Fermi gases:
 - Creating a strongly interacting Fermi gas
 - Universal energy and entropy, Quantum viscosity, KSS conjecture
- Scale Invariance in Expanding Fermi gases:
 - Defining and observing scale invariant expansion:
 "Ballistic" flow of a *Hydrodynamic* gas
 - Observation of conformal symmetry breaking
 - Vanishing Bulk viscosity
- Searching for Perfect fluids
 - Measuring Shear viscosity on and off resonance
 - Comparison with the KSS bound
- Future Prospects

Why Study Strongly Interacting Fermi Gases?

Strongly Interacting Fermionic Systems

Neutron Star

Quark Gluon Plasma

Ultra-Cold Fermi Gas

High Temperature Superconductors

Creating a *Scale-Invariant* Strongly-Interacting Fermi gas

Creating a Scale-Invariant Strongly-Interacting ⁶Li Fermi gas

Experimental Apparatus

Experimental Apparatus

Optically Trapped Fermi Gas

Feshbach Resonance

Resonant Coupling between Colliding Atom Pair – Bound Molecular State

Tunable Strong Interactions

Strong Interactions: Shock waves in Fermi gases

- Trapped gas is divided into two clouds with a repulsive optical potential.
- The repulsive potential is extinguished, the two clouds accelerate towards each other and collide.

Really strong interactions!

Universal Regime: Natural Units

Universal Regime: For resonant scattering,

the scattering cross section is the square of the de Broglie wavelength, which is independent of the details of the collisional interactions!

Atom spacing L

becomes the *only* length scale.

Heisenberg Uncertainty Principle: $\Delta x \Delta p \approx \hbar$

$$\Delta p \approx p \approx \frac{\hbar}{L}$$

Physical Properties, like Energy and Temperature have *Natural Units* determined by L.

When the interparticle spacing sets the scale of energy and temperature, the pressure p is a function only of density n and temperature T:

p(n,T)

Using elementary thermodynamics, one then can show that

$$p = \frac{2}{3} \mathcal{E}$$
 \mathcal{E} = energy density (Ho, 2004)

This elementary result has several amazing consequences.

Global energy E measurement

Thomas (2005)

Werner and Castin (2006)

Castin (2004)

Son (2007)

Universal Gas obeys the Virial Theorem

$$E = \left\langle U \right\rangle + \frac{1}{2} \left\langle \mathbf{r} \cdot \nabla U \right\rangle$$

In a HO potential: $E = 2\langle U \rangle$

Energy per particle

$$\mathbf{E} = 3m\omega_z^2 \left\langle z^2 \right\rangle$$

For a *universal* quantum gas, the energy **E** is determined by the *cloud size*

For a *universal* quantum gas, the energy E is determined by the *cloud size*

For a *weakly interacting* quantum gas the entropy S can always be determined from the *cloud size* (textbook problem)

Experiment

Start: 832 G Universal Strongly interacting Sweep magnetic field

End: 1200 G Weakly interacting

Energy per particle versus Entropy per Particle

Solid line—from measured equation of state: Ku et al., Science, 2012

Perfect Fluidity—Viscosity

Ultra-cold Atomic Fermi gas: T = 10⁻⁷ K Universal Regime: Viscosity Scale

Quantum scale—requires Planck's constant!

The Minimum Viscosity Conjecture

Resistance to flow—hydrodynamic properties

Disorder—thermodynamic properties

Minimum defines a Perfect Fluid

Minimum Viscosity Conjecture Experimentalist's Approach!

Density cancels!

In a ⁶Li gas we can *measure* η and s.

Is the Expansion Scale-Invariant?

in Expanding Resonant Fermi Gases

Expanded "Balloons"

Measuring the cloud in 3D

• Measure *all three* cloud radii using two cameras.

Scale-Invariance: Connecting Strongly to Weakly Interacting

- Anti-de Sitter-Conformal Field Theory Correspondence: Connects strongly interacting fields in 4-dimensions to weakly interacting gravity in 5-dimensions: Perfect fluid conjecture
 - Can we connect elliptic flow of a resonant gas to the ballistic flow of an *ideal* gas in 3D?

For both, the pressure is 2/3 of the energy density:

$$\Delta p \equiv p - \frac{2}{3}\varepsilon = 0$$

Scale Invariant?

Elliptic Flow: Observe 2 dimensions + time

Scale Invariance: Ideal Gas

How does the *mean square radius* evolve in time?

$$\left\langle \mathbf{r}^{2} \right\rangle = \left\langle x^{2} + y^{2} + z^{2} \right\rangle$$

Virial Theorem:

$$m\left\langle \mathbf{v}^{2}\right\rangle _{0}=\left\langle \mathbf{r}\cdot\nabla\mathbf{U}\right\rangle _{0}$$

$$\left\langle \mathbf{r}^{2} \right\rangle = \left\langle \mathbf{r}^{2} \right\rangle_{0} + \frac{t^{2}}{m} \left\langle \mathbf{r} \cdot \nabla \mathbf{U} \right\rangle_{0}$$

Ballistic Flow

Defining Scale Invariant Flow

t = expansion time

Defines Scale Invariant Flow!

How does the *mean square radius* evolve in time? $\langle \mathbf{r}^2 \rangle = \langle x^2 + y^2 + z^2 \rangle$

Scale Invariant Expansion

Scale Invariance!

Resonant gas
$$\Delta p \equiv p - \frac{2}{3}\varepsilon = 0$$

The bulk viscosity is predicted to vanish so

$$\left\langle \mathbf{r}^{2} \right\rangle = \left\langle \mathbf{r}^{2} \right\rangle_{0} + \frac{t^{2}}{m} \left\langle \mathbf{r} \cdot \nabla \mathbf{U} \right\rangle_{0}$$

Ballistic Flow!

Can we observe *ballistic* flow of an *elliptically* expanding gas?

Scale-invariant "Ballistic" Expansion

Summary: Scale-Invariant Expansion

<u>String theory</u> has sometimes been characterized as an elegant scale-invariant theory of everything with one minor defect: It <u>Predicts Nothing!</u>

<u>JET:</u>

"Now we have an experiment that Measures Nothing to compare to it!"

Conformal Symmetry Breaking

Pressure Change Δp

Dimensional analysis, to leading order in 1/k_Fa, requires

$$p - \frac{2}{3}\varepsilon \equiv \Delta p = n\varepsilon_F(n)\frac{f_p(\theta)}{k_F a}$$

Vanishes for infinite scattering length.

Time dependence: $k_F = (3\pi^2 n)^{1/3} \propto \Gamma^{-1/3}$ $\Gamma(t)$ = volume scale factor

Assuming the temperature drops adiabatically, the reduced temperature θ is time-independent:

$$\theta \equiv \frac{k_B T}{\varepsilon_F} \propto \frac{T}{k_F^2}$$

$$\frac{1}{N}\int d^{3}\mathbf{r}\Delta p = \frac{C}{3}\frac{\left\langle \mathbf{r}\cdot\nabla U\right\rangle_{0}}{k_{FI}a}\Gamma^{-1/3}(t)$$

 $\frac{1}{k_{FI}a} = \pm 0.6$

Changes sign with the scattering length

Breaking Scale Invariance

Bulk Viscosity at Resonance

Evaluate last term in scaling approximation:

 Γ (t) = volume scale factor

$$\nabla \cdot \mathbf{v} = \dot{\Gamma} / \Gamma$$

Bulk Viscosity

Dimensional analysis, to leading order in $1/k_Fa$, with $\zeta_B \ge 0$ requires

$$\zeta_{B} \equiv \hbar n \frac{f_{B}(\theta)}{\left(k_{F}a\right)^{2}} \equiv \alpha_{B} \hbar n$$

Time dependence: $k_F = (3\pi^2 n)^{1/3} \propto \Gamma^{-1/3}$ $\Gamma(t)$ = volume scale factor

Assuming the temperature drops adiabatically, the reduced temperature θ is time-independent:

$$\theta \equiv \frac{k_B T}{\varepsilon_F} \propto \frac{T}{k_F^2}$$

$$\frac{1}{N}\int d^{3}\mathbf{r}\boldsymbol{\varsigma}_{B} \equiv \hbar \overline{\alpha}_{B}(0) \Gamma^{2/3}(t)$$

Measuring the Shear Viscosity

From the Navier-Stokes and continuity equations, it is easy to show that a single component fluid obeys:

Pressure Trap potential

$$\frac{d^2}{dt^2} \frac{m\langle x_i^2 \rangle}{2} = m\langle \mathbf{v}_i^2 \rangle + \frac{1}{N} \int d^3 \mathbf{r} \ p - \langle x_i \partial_i U \rangle - \hbar \langle \alpha_S \sigma_{ii} + \alpha_B \nabla \cdot \mathbf{v} \rangle$$

Stream KE

Shear and Bulk Viscosity

<u>Equilibrium:</u> $\frac{3}{N} \int d^3 \mathbf{r} \ p_0 = \langle \mathbf{r} \cdot \nabla U \rangle_0 \equiv \widetilde{E}$

Measured from the cloud profile and trap parameters

Need to find the time-dependent volume integral of the pressure:

Energy Conservation

For a temporally constant potential energy U, the internal energy change during expansion is:

$$dE_{\rm int} = dQ - pdV$$

 $\cdot \mathbf{v})p$

$$\overrightarrow{E}_{\rm int} = \dot{Q} - p\dot{V}$$

The local volume dilates at a rate: $\dot{V} = d^3 \mathbf{r} \nabla \cdot \mathbf{v}$

$$E_{\text{int}} = \int d^3 \mathbf{r} \mathcal{E}$$

energy density
$$\frac{d}{dt} \int d^3 \mathbf{r} \mathcal{E} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} - \int d^3 \mathbf{r} \left(\nabla d^3 \mathbf{r} \right) d^3 \mathbf{r} = \dot{Q} + \dot{Q} +$$

 $\frac{2}{3}\mathcal{E} = p - \Delta p$ $\Delta p = 0$ for resonantly interacting gas

Easy to solve in scaling approximation: Γ (t) = volume scale factor

$$\nabla \cdot \mathbf{v} = \dot{\Gamma} / \Gamma$$

Scaling Approximation

Pressure Correction Factors

Velocity field is linear in the spatial coordinates $v_i = x_i \frac{b_i}{b_i}$

$$\nabla \cdot \mathbf{v} = \frac{\Gamma}{\Gamma}$$

Heating rate per particle:

$$\frac{\dot{Q}}{N} = \frac{\hbar}{2} \left(\overline{\alpha}_{S} \sum_{i} \sigma_{ii}^{2} + 2\overline{\alpha}_{B} (\nabla \cdot \mathbf{v})^{2} \right)$$

 $\dot{C}_{Q}(t) = \frac{2\dot{Q}(t)}{N} \frac{\Gamma^{2/3}(t)}{\langle \mathbf{r} \cdot \nabla U \rangle_{0}}$

Conformal symmetry breaking pressure:

$$\frac{1}{N}\int d^{3}\mathbf{r}\Delta p = \frac{C}{3}\frac{\langle \mathbf{r}\cdot\nabla U\rangle_{0}}{k_{FI}a}\Gamma^{-1/3}(t)$$

Pressure correction factor:

$$C_{\Delta p}(t) = -\frac{C}{k_{FI}a} (\Gamma^{1/3}(t) - 1)$$

Cloud-Averaged Viscosity

<u>Shear Viscosity:</u> $\eta_S \equiv \alpha_S \hbar n$

Cloud-averaged shear viscosity coefficient:

$$\overline{\alpha}_{S} \equiv \frac{1}{N\hbar} \int d^{3}\mathbf{r} \eta_{S}(\mathbf{r}) = \int d^{3}\mathbf{r} \frac{n(\mathbf{r})}{N} \alpha_{S}[\theta(\mathbf{r})] = \left\langle \alpha_{S} \right\rangle_{0}$$

*Temporally constant in the adiabatic approximation = Trap average.

Volume integrated KSS bound:

$$\overline{\alpha}_{S} \equiv \frac{1}{N\hbar} \int d^{3}\mathbf{r} \,\eta_{S}(\mathbf{r}) \geq \frac{1}{N} \int d^{3}\mathbf{r} \frac{s(\mathbf{r})}{4\pi k_{B}} = \frac{1}{4\pi} \frac{S/N}{k_{B}}$$

Shear Viscosity at Resonance versus Reduced Temperature

Shear Viscosity: Universal Scaling

 $\eta = \alpha_s \hbar n$

Shear Viscosity/Entropy versus Entropy: Resonance

Shear Viscosity/Entropy versus Entropy: Perfect Fluid?

Problems with Viscosity Measurement

- We have measured the "Cloud-Averaged" shear viscosity.
- Integration "Volumes" for entropy and viscosity may not be the same.
- What can we say about the "Local" shear viscosity?
 - Inverting cloud-averaged data
 - Local ratio of shear viscosity to entropy density
 - Comparison with predictions

Cloud-Averaged Shear Viscosity versus Reduced Temperature

at the trap center

Obtaining Local Viscosity from Cloud-Averaged Viscosity Data

$$\langle \alpha_s \rangle_0 = \frac{1}{N} \int_0^\infty d^3 r \, \alpha_s [\theta(r)] n(r) \longrightarrow \infty$$
 A problem!
 $\propto T^{3/2} \text{ as } r \to \infty$

Cutoff radius:
$$\langle \alpha_s \rangle_0 = \frac{1}{N} \int_0^{R_c} d^3 r \, \alpha_s [\theta(r)] n(r)$$

Choose R_c to agree with high temperature data:

$$R_C = 0.98 \left\langle r^2 \right\rangle^{1/2}$$

Now we can estimate $\alpha_{s}(\theta)$ by image processing methods!

Local Shear Viscosity versus Reduced Temperature

Cloud-Averaged Shear Viscosity versus Reduced Temperature

Local Shear Viscosity (Comparison to Theory)

Ratio of the Local Shear Viscosity to the Entropy Density*

Summary: Image Processing

<u>Quote</u> on extrapolating QMC data in a recent viscosity theory paper:

"As a result the integral equation [3] belongs to a class of numerically ill-posed problems. Therefore, the use of special techniques is warranted in order to extract numerically stable results."

<u>JET:</u>

"Now we have numerically ill-posed measurements to compare to numerically ill-posed predictions!"

Summary

• Testing "string" theory

- Scale invariant hydrodynamics and thermodynamics

- Scale invariance in expanding Fermi gases:
 - "Ballistic" flow of resonant, hydrodynamic gas
 - Bulk viscosity very small compared to shear viscosity
 - Perfect fluidity and shear viscosity:
 - Need for direct measurement of local shear viscosity
 - Need for non-relativistic conformal field theory or a trapped "relativistic" gas

1D Flow in a Rectangular Pipe

Use a micro-mirror array to create a four sheet repulsive optical potential:

Birthday Party December 2015

Bulk Viscosity ζ_{B}

Near unitarity, the bulk viscosity generally takes the form:

$$\zeta_B = \frac{f_B(\theta)}{\left(k_F a\right)^2} \hbar n \equiv \alpha_B \hbar n$$

 θ = reduced temperature, a = s-wave scattering length, k_F = local Fermi wave vector

The trap-average gives:

$$\overline{\alpha}_{B}(t) = \overline{\alpha}_{B}(0)\Gamma^{2/3}(t)$$

<u>High T:</u> Dusling and Schaefer point out that the bulk viscosity must be second order in the fugacity $z \cong n\lambda_T^3 / 2$

$$\zeta_B = \frac{1}{24\pi\sqrt{2}} \frac{\lambda_T^2}{a^2} \frac{\hbar}{\lambda_T^3} z^2 \qquad \overline{\alpha}_B(0) = \frac{9}{32} \frac{1}{\left(k_{FI}a\right)^2} \left(\frac{E_F}{E}\right)^4 \equiv c_B \left(\frac{E_F}{E}\right)^4$$