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Outline

e Introduction: Optically trapped Fermi gases:

— Creating a strongly interacting Fermi gas
— Universal energy and entropy, Quantum viscosity, KSS conjecture

e Scale Invariance in Expanding Fermi gases:
— Defining and observing scale invariant expansion:
“Ballistic” flow of a Hydrodynamic gas
— Observation of conformal symmetry breaking
— Vanishing Bulk viscosity

e Searching for Perfect fluids
— Measuring Shear viscosity on and off resonance
— Comparison with the KSS bound

* Future Prospects



Why Study Strongly Interacting
Fermi Gases?

Strongly Interacting Fermionic Systems

Neutron Quark Gluon Plasma Ultra-Cold
Star Fermi Gas

High Temperature Superconductors



Creating a Scale-Invariant
Strongly-Interacting Fermi gas

Magnet coils

CO, beam




Creating a Scale-Invariant
Strongly-Interacting °Li Fermi gas

Atoms precooled
In a magneto-optical trap

Uy/kg = 700 puK







Experimental Apparatus

]

|




Optically Trapped Fermi Gas

electron S, nuclear 7,)
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Feshbach Resonance

Resonant Coupling between Colliding Atom Pair — Bound Molecular State

Singlet Diatomic

e SCALE INVARIANT!
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832 G-Resonant Scattering!



Tunable Strong Interactions

Scattering Length
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Strong Interactions:
Shock waves in Fermi gases

N
=

» Trapped gas is divided into two clouds with a repulsive optical potential.

» The repulsive potential is extinguished, the two clouds accelerate towards
each other and collide.

Shock
— Fronts

Really strong interactions!



Universal Regime: Natural Units

Universal Regime: For resonant scattering,

the scattering cross section is the square of the de Broglie wavelength,
which is independent of the details of the collisional interactions!

Atom spacing L
becomes the only length scale.

il

Heisenberg Uncertainty Principle: AxAp = h Ap~p= n

L

2
Physical Properties, like Energy and Temperature Fermi h
have Natural Units determined by L. Energy: 2mL2




Universal Thermodynamics

When the interparticle spacing sets the scale of energy and temperature,
the pressure p is a function only of density n and temperature T:

p(n,T)

Using elementary thermodynamics, one then can show that

2

P =3

&

E — energy density

(Ho, 2004)

This elementary result has several amazing consequences.



Global energy E measurement

Universal Gas obeys the Virial Theorem  Thomas (2005)

Castin (2004)

E = <U> + % <I’ : VU> Werner and Castin (2006)

Son (2007)

In a HO potential: £ = 2<U>

— Energy per particle  |E =3ma’ <22>

—

For a universal quantum gas,
the energy E Is determined
by the cloud size



Measuring the Energy E and Entropy S

—

For a universal quantum gas,
the energy E is determined
by the cloud size

A\ 4

For a weakly interacting quantum gas
the entropy S can always be determined
from the cloud size (textbook problem)

Experiment

- —— — O
Start: 832 G Sweep magnetic fleld ~ End: 1200 G
Universal Weakly interacting

Strongly interacting



Is the B-Field Sweep Adiabatic?

Magnetic Field [G]
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Energy per particle
versus Entropy per Particle
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Solid line—from measured equation of state: Ku et al., Science, 2012



Perfect Fluidity—Viscosity

Quark-Gluon Plasma: T =102 K

Computer simulaion of RHIC collision
BIG BANG Ultra-cold Atomic
Fermigas: T =107K



Universal Regime: Viscosity Scale

Shear forces: 1/4 ;é = AV
dT/ v "oy

Viscosit le: 77"’£ p"ﬁ A~ IL°
iscosity scale: y 7 ~

h Nz 3/2
UzE:hn n = density N/l?} o

High Temperature Limit

Quantum scale—requires Planck’s constant!



Quantum Viscosity

Viscosity: 77 = hin n = density ( particles/cc)

/

dimensionless shear viscosity coefficient

Water: n=3.3x1022 171=300 7n
Air: n=27x10"® 7 =6000 /n

Fermigas: n=3.0x103 7n=0.57%n

Nuclear Matter: n=3.0x10%8 n=?hn




The Minimum Viscosity Conjecture

Resistance to flow—nhydrodynamic properties

viscosity _ oc surfaceareablackhole 1 7
entropy "“@SurfedBsblackNole 4k,

Disorder—thermodynamic properties

Minimum defines a Perfect Fluid



Minimum Viscosity Conjecture
Experimentalist’s Approach!

Viscosity in —Hydrodynamics

~N
~

Entropy density k, n —Thermodynamics

Qh
s kg

Density cancels!

In a °Li gas we can measure | and s.

Is the Expansion Scale-Invariant?




Scale Invariance
in Expanding Resonant Fermi Gases

N
=

& — 2

Compressed
“Balloons”

Expanded “Balloons”



Measuring the cloud in 3D

X i

Trap with
3:1 transverse
aspect ratio

>

» Measure all three cloud radii using two cameras.




Aspect Ratio versus Expansion Time
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Scale-Invariance: Connecting
Strongly to Weakly Interacting

 Anti-de Sitter-Conformal Field Theory
Correspondence: Connects strongly interacting
- fields in 4-dimensions to weakly interacting gravity
in 5-dimensions: Perfect fluid conjecture
-

« Can we connect elliptic flow of a resonant gas
to the ballistic flow of an ideal gas in 3D?

=)

For both, the pressure is 2/3 of the energy density:

Ap = p— é E = O Scale Invariant?

Elliptic Flow: Observe 2 dimensions + time




Scale Invariance: Ideal Gas

|deal gas: r=r,+ Vi Ballistic flow

t

4__.:'I>

U(r) trap potential

() ={rf), +50v°),

Cloud average

How does the mean square radius evolve in time? <I’2> - <x2 + y2 + 22>

Virial Theorem: 2

m(v?) =(r-vU), <r2>=<r2>0+t—<r-vu>o Ballistic Flow

m




Defining Scale Invariant Flow

t = expansion time

<r2> = <x2 +y° +zz>

Cloud average

Defines Scale Invariant Flow!



Scale Invariance: Resonant Gas

Hydrodynamic gas: Elliptic flow

t

=

U(r) trap potential

How does the mean square radius evolve in time? <I’2> - <x2 + y2 + 22>



Scale Invariant Expansion

Using the hydrodynamic equations and energy conservation it /

is easy to show that \
3

2
az m(r’)
> :<r.VU> +—Id3 = Mg ——Ids V-V
dr® 2 °
Initial trap potential Conformal symmetry Bulk viscosity
breaking Ap

Ap=p—=




Scale Invariance!

Resonantgas Ap = p — % c=0

The bulk viscosity is predicted to vanish so

2

(r)= <r2>0 +t—<r-VU>O Ballistic Flow!
m

Can we observe ballistic flow of an elliptically expanding gas?



Scale-invariant “Ballistic” Expansion
of a Resonant Fermi gas

The aspect ratio exhibits elliptic flow, ;
but the mean-square cloud radius expands |
ballistically: SCALE-INVARIANT! o

.+~ Elliott, Joseph, JET |
o b PRL 112, 040405 (2014)

05 10 15 20
Expansion time t [ms]



Summary:
Scale-Invariant Expansion

String theory has sometimes been characterized

as an elegant scale-invariant theory of everything
with one minor defect: It Predicts Nothing!

JET:

“Now we have an experiment that Measures Nothing to compare to it!”



Conformal Symmetry Breaking

Observing the conformal symmetry breaking pressure:

PN \ /

dz m<|’2> 3 3 3 3
= =<F-VU>O(FJ‘CZ I‘(AP—Apo) ﬁjd FogY -V
~__ “~ /\
Initial trap potential Conformal symmetry Bulk viscosity

breaking Ap

Apzp—éé‘




Pressure Change 4p

Dimensional analysis, to leading order in 1/kca, requires

fp (0) Vanishes for infinite

/ scattering length.

Time dependence: k, = (372271)1/3 oc '3 r(t) = volume scale factor

p_éngp =néeg(n)
Fa

Assuming the temperature drops adiabatically, _ k,T o T
the reduced temperature 6 is time-independent: = J 2
¢r F
1 c(r-vU) 1
_IdBrAp: < >0 IR l/B(t) —+06
N 3 kya K@
FI™ ™~_

\ Changes sign with

the scattering length



Breaking Scale Invariance

eB=-7606 Ap >0
® B = 832G Ap:O
®B=986G Ap <0

(r*) C=0.21

Elliott, Joseph, JET ’
— PRL 112, 040405 (2014)
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Time [ms]




Bulk Viscosity at Resonance

Measuring the bulk viscosity:

Initial trap potential Conformal symmetry Bulk viscosity
breaking Ap =0

Evaluate last term in scaling approximation:
['(t) = volume scale factor

V-v=T/T




Bulk Viscosity

Dimensional analysis, to leading order in 1/kca, with ¢, =0 requires

Time dependence: k, = (372271)1/3 oc '3 r(t) = volume scale factor

Assuming the temperature drops adiabatically, kT T
AR = oC
the reduced temperature 6 is time-independent: £, k;

1 _
= d’r, =na, )T ()




Bulk Viscosity at Resonance

41 ,
| e Shearviscosity 1y = hn L
g -~ ® Bulkviscosity , =a,hn + %

S 3}

2 3; Elliott, Joseph, JET ++

> | PRL 112, 040405 (2014) L

= 9l 7

O ,%

3 | L

o o ——

Z 1 F;{n,}“ The bulk viscosity vanishes!

g | ,,,ﬁ***‘”i“" a,(0) < 0.04 |
B T e

Energy E/ER



Measuring the Shear Viscosity

From the Navier-Stokes and continuity equations, it is easy to
show that a single component fluid obeys:

Pressure Trap potential

i+ i
drc 2

= m<vf>+%jd3r p—(x,0,U)-maso, +a,V-V)

Stream KE Shear and Bulk Viscosity

E Measured from the cloud
profile and trap parameters

3
Equilibrium: ﬁjaﬁr po=(r-vU),

Need to find the time-dependent volume integral of the pressure:



Energy Conservation

For a temporally constant potential energy U,
the internal energy change during expansionis: dE. . =dQ — pdV

::> Eint:Q_pV

V=d%V-v

The local volume dilates at a rate:

d3r8=Q—jd3r(V-v)p

Eint = _[dgrfg i
energy density | dt
“e=p—A
36 =p—Ap

Easy to solve in scaling approximation:

['(t) = volume scale factor

AP =0 for resonantly interacting gas

V-v=T/T




Scaling Approximation 5

no(x/b,,ylb,,z1b.) T =pbbb

nx,y,x,t)= X vz
( RN ) r Volume scale factor
Vl. = X, bl. /bl Velocity field is linear in the spatial coordinates

2 — VU> b 2T
<xl>=< >b (t) W, = 3m< >0 Uz‘i_zb—i_gf

2\ _
<Vl > B < > b (7) Cloud-averaged shear viscosity coefficient

Pressure correction factors

— v
bi F2/3b [1+C (t)+CAp (t)]_ m<CXZS>Obl _a)izmagbi




Pressure Correction Factors 5

Se.

Velocity field is linear in the spatial coordinates V. = x,

= |

L y.y=L
I

1

Heating rate per particle: —> Heating correction factor:

Q_h — 2 2 ‘ _ZQ(t) (1)
W_E( SzilaﬁJrZaB(V-V)j C,(t) = v <r-VU>O

C <I’ °VU>0 s (1)

Conformal symmetry ifaﬁrAp _
N

breaking pressure: 7

C (F1/3 (1) —l)

JL

Pressure correction factor:  C, (¢) =-—



Cloud-Averaged Viscosity

Shear Viscosity: N¢ = OtShn

Cloud-averaged shear viscosity coefficient:

7=~ [dr, ) = [ "D a0 = (a),

*Temporally constant in the adiabatic approximation = Trap average.

Volume integrated KSS bound:

1 s(r) 1 S/N
a.=—\|d’rn.(r >— d’r
> Nh 15(0) j Ak, Arx k,




Shear Viscosity at Resonance
versus Reduced Temperature

SN
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*EoS from Ku et al.,Science, 2012



Shear Viscosity: Universal Scaling

n=ahn

? 1 JETLab,
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Shear Viscosity/Entropy versus
Entropy: Resonance
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Shear Viscosity/Entropy
versus Entropy: Perfect Fluid?
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Problems with Viscosity
Measurement

* \We have measured the “Cloud-Averaged” shear viscosity.

e Integration “Volumes” for entropy and viscosity
may not be the same.

 \What can we say about the “Local” shear viscosity?

— Inverting cloud-averaged data

— Local ratio of shear viscosity to entropy density
— Comparison with predictions



Cloud-Averaged Shear Viscosity
versus Reduced Temperature

1| —

Superfluid

Transition 0-5;‘

*EoS from Ku et al.,Science, 2012
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0o +— Reduced temperature
at the trap center



Obtaining Local Viscosity from
Cloud-Averaged Viscosity Data

N
=

(as), -1 [d°r o [0G)]n(r) —> 0O A problem!
Nt g
oc T¥* asr — o

Rc

Cutoff radius: {@s), Z% jd?”” as|0(r)]n(r)

0

Choose R to agree with high temperature data:

R =098(r%)"

Now we can estimate o.(0) by image processing methods!



Local Shear Viscosity
versus Reduced Temperature

lteration Number: 50
Es5—mmmMmM——— Bruun, Smith

Phys. Rev. A 75

High Temperature Limit 043612 (2007)

: ag =277 02—

4 - Sttucture appears at
Usg " low temperature




Cloud-Averaged Shear Viscosity
versus Reduced Temperature

Integrated local viscosity
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*EoS from Ku et al.,Science, 2012
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Local Shear Viscosity
(Comparison to Theory)

------ Measured”

Kinetic theory
ag = 2.77 632

Enss et al., Annals 2011
(Diagrammatic Kubo
formula)

Wilaztowski et al., PRL
2012 (Monte Carlo)

Guo et al., PRL 2011



Ratio of the Local Shear Viscosity
to the Entropy Density”
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Summary: Image Processing

Quote on extrapolating QMC data
in a recent viscosity theory paper:

“As a result the integral equation [3]
belongs to a class of numerically ill-posed
problems. Therefore, the use of special
techniques is warranted in order to extract
numerically stable results.”

JET:

“Now we have numerically ill-posed measurements
to compare to numerically ill-posed predictions!”



Summary

e Testing “string” theory
— Scale invariant hydrodynamics and thermodynamics

e Scale invariance in expanding Fermi gases:
— “Ballistic” flow of resonant, hydrodynamic gas

— Bulk viscosity very small compared to shear viscosity

o Perfect fluidity and shear viscosity:
— Need for direct measurement of local shear viscosity
— Need for non-relativistic conformal field
theory or a trapped “relativistic” gas



1D Flow in a Rectangular Pipe

Use a micro-mirror array to
create a four sheet repulsive
optical potential:

Camera




December 2010 Celebration!

N
=




Birthday Party December 2015




Bulk Viscosity ¢

Near unitarity, the bulk viscosity generally takes the form:

f:(0) . 0 = reduced temperature,
é/B - (k )2 hin = Xy hin a = s-wave scattering length,
rd ke = local Fermi wave vector
e — — 213
The trap-average gives: a, (t) =, (O) I (t)

High T: Dusling and Schaefer point out that the bulk viscosity
must be second order in the fugacity z = nf} /2

1 A h 9 1 (E. EN\
= z el O — F — _r
o 2472 a* A %O = 5y ( Ej CB( j




