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Outline

• Scale Invariance in Expanding Fermi gases:
– Defining and observing scale invariant expansion:  

“Ballistic” flow of a Hydrodynamic gas
– Observation of conformal symmetry breaking
– Vanishing Bulk viscosity

• Introduction: Optically  trapped Fermi gases:
– Creating a strongly interacting Fermi gas
– Universal energy and entropy, Quantum viscosity, KSS conjecture

• Searching for Perfect fluids
– Measuring Shear viscosity on and off resonance
– Comparison with the KSS bound

• Future Prospects



Strongly Interacting Fermionic Systems

Neutron 
Star

Quark Gluon Plasma Ultra‐Cold 
Fermi Gas

Why Study Strongly Interacting
Fermi Gases?

High Temperature Superconductors



Creating a Scale-Invariant
Strongly-Interacting Fermi gas



2 MW/cm2

U0/kB = 700 K

Atoms precooled
in a magneto-optical trap
to 150 K

Creating a Scale-Invariant
Strongly-Interacting 6Li Fermi gas



Experimental Apparatus



Experimental Apparatus



Optically Trapped Fermi Gas
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Resonant Coupling between Colliding Atom Pair – Bound Molecular State

832 G-Resonant Scattering!

2
coll 4 dB 

SCALE INVARIANT!



Tunable Strong Interactions

527.5 G

Zero Crossing
(Ideal gas)

832.2 G

Resonance



Really strong interactions!

Shock
Fronts

• Trapped gas is divided into two clouds with a repulsive optical potential.

• The repulsive potential is extinguished, the two clouds accelerate towards 
each other and collide.

Strong Interactions: 
Shock waves in Fermi gases



Atom spacing L
becomes the only length scale. 

L

Physical Properties, like Energy and Temperature 
have Natural Units determined by L.    

Universal Regime: Natural Units

Universal Regime: For resonant scattering, 
the scattering cross section is the square of the de Broglie wavelength, 
which is independent of the details of the collisional interactions!

Heisenberg Uncertainty Principle:  px
L

pp 

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2

2mL
Fermi 

Energy:



Universal Thermodynamics

When the interparticle spacing sets the scale of energy and temperature,
the pressure p is a function only of density n and temperature T:

),( Tnp

This elementary result has several amazing consequences.

Using elementary thermodynamics, one then can show that

3
2p energy density

(Ho, 2004)



Global energy E measurement

223E zm zEnergy per particle

For a universal quantum gas,
the energy E is determined 
by the cloud size

UE 2In a HO potential:

Universal Gas obeys the Virial Theorem Thomas (2005)
Castin (2004)
Werner and Castin (2006)
Son (2007)

UUE  r2
1



Measuring the Energy E and Entropy S

For a universal quantum gas,
the energy E is determined 
by the cloud size

For a weakly interacting quantum gas
the entropy S can always be determined  
from the cloud size (textbook problem)Experiment

End: 1200 G
Weakly interacting

Sweep magnetic fieldStart: 832 G
Universal
Strongly interacting        
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Energy per particle 
versus Entropy per Particle
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Red circles: Measured
JETLab, JLTP 2009

Solid line—from measured equation of state: Ku et al., Science, 2012



Perfect Fluidity—Viscosity

Computer simulation of RHIC collision
BIG BANG

Quark-Gluon Plasma: T = 1012 K

Ultra-cold Atomic 
Fermi gas: T = 10-7 K

JETLab
2002

Both Exhibit Elliptic Flow! 
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vF
d
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Shear forces:

L
p 
 2LA 

Quantum scale—requires Planck’s constant!

Universal Regime: Viscosity Scale

n
L


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 3 n = density

2/3
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High Temperature Limit



Quantum Viscosity 

n = density ( particles/cc)nS  Viscosity:

dimensionless shear viscosity coefficient

Water: n = 3.3 x 1022 n300

Air: n = 2.7 x 1019 n6000

Fermi gas: n = 3.0 x 1013 n5.0

Nuclear Matter: n = 3.0 x 1038 n?



The Minimum Viscosity Conjecture

entropy
viscosity

Bk


4
1

holeblack  area surface
holeblack  area surface

entropy
viscosity







Resistance to flow—hydrodynamic properties 

Disorder—thermodynamic properties 

Minimum defines a Perfect Fluid

Kovtun, Son, Starinets, PRL 2005



Minimum Viscosity Conjecture
Experimentalist’s Approach!

Viscosity      —Hydrodynamicsn

Bks





Entropy density        —ThermodynamicsnkB

Density cancels!

In a 6Li gas we can measure  and s.

Is the Expansion Scale-Invariant?



Scale Invariance
in Expanding Resonant Fermi Gases

Compressed 
“Balloons”

Expanded “Balloons”

2
coll 4 dB 



Measuring the cloud in 3D

• Measure all three cloud radii using two cameras.

Trap with 
3:1 transverse

aspect ratio



Aspect Ratio versus Expansion Time
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Scale-Invariance: Connecting 
Strongly to Weakly Interacting

• Can we connect elliptic flow of a resonant gas
to the ballistic flow of an ideal gas in 3D?

• Anti-de Sitter-Conformal Field Theory
Correspondence: Connects strongly interacting 
fields in 4-dimensions to weakly interacting gravity 
in 5-dimensions: Perfect fluid conjecture

For both, the pressure is 2/3 of the energy density:

03
2  pp Scale Invariant?

Elliptic Flow: Observe 2 dimensions + time



Scale Invariance: Ideal Gas
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Defining Scale Invariant Flow

Cloud average

2
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Defines Scale Invariant Flow!

t = expansion time



Scale Invariance: Resonant Gas

Hydrodynamic gas:

2
0r

Elliptic flow

2
0r

t
2r ?

How does the mean square radius evolve in time? 2222 zyx r

)(rU trap potential



Scale Invariant Expansion
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Using the  hydrodynamic equations and energy conservation it 
is easy to show that

Initial trap potential Bulk viscosityConformal symmetry
breaking Dp

3
2 pp



Scale Invariance!

03
2  ppResonant gas
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The bulk viscosity is predicted to vanish so

Can we observe ballistic flow of an elliptically expanding gas?

Ballistic Flow!



Expansion time

Elliott, Joseph, JET
PRL 112, 040405 (2014)

Scale-invariant “Ballistic” Expansion
of a Resonant Fermi gas 
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The aspect ratio exhibits elliptic flow, 
but the mean-square cloud radius expands 
ballistically: SCALE-INVARIANT!
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JET:

“Now we have an experiment that Measures Nothing to compare to it!”

Summary: 
Scale-Invariant Expansion

String theory has sometimes been characterized 
as an elegant scale-invariant theory of everything 
with one minor defect: It Predicts Nothing!



Conformal Symmetry Breaking

Initial trap potential Bulk viscosity
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Observing the conformal symmetry breaking pressure:

Conformal symmetry
breaking Dp
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Pressure Change D p 
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Assuming the temperature drops adiabatically,
the reduced temperature q  is time-independent:

Changes sign with 
the  scattering length 

6.01
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akFI

Vanishes for infinite
scattering length.
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Breaking Scale Invariance 

C = 0.21



Bulk Viscosity at Resonance
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Measuring the bulk viscosity:

Initial trap potential Bulk viscosityConformal symmetry
breaking Dp = 0

 /v
Evaluate last term in scaling approximation: 

G(t) = volume scale factor



Bulk Viscosity 
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Assuming the temperature drops adiabatically,
the reduced temperature q  is time-independent:



Shear viscosity
Bulk viscosity nBB  

nSS  

Elliott, Joseph, JET
PRL 112, 040405 (2014)

Bulk Viscosity at Resonance

The bulk viscosity vanishes!

04.0)0( B



Measuring the Shear Viscosity

From the Navier-Stokes and continuity equations, it is easy to 
show that a single component fluid obeys:

vr   BiiSiii
i Uxpd
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Trap potential

Shear and Bulk Viscosity

Pressure

Stream KE

Need to find the time-dependent volume integral of the pressure:

Equilibrium: EUpd
N

~3
00

3  rr Measured from the cloud 
profile and trap parameters



Energy Conservation

 pdQd
dt
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For a temporally constant potential energy U, 
the internal energy change during expansion is: pdVdQdE int

vr  3dVThe local volume dilates at a rate:

VpQE  int

D p = 0 for resonantly interacting gaspp 3
2
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Easy to solve in scaling approximation: 

G(t) = volume scale factor

 r3
int dE

energy density



Scaling Approximation
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Pressure Correction Factors
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Cloud-Averaged Viscosity

nSS  Shear Viscosity:
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*Temporally constant in the adiabatic approximation = Trap average.
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Joseph, Elliott, JET
PRL 115, 020401 (2015)

Shear Viscosity at Resonance
versus Reduced Temperature

Transition to Superfluid

*EoS from Ku et al.,Science, 2012
Reduced temperature
at the trap center



Shear Viscosity: Universal Scaling
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PRL 116, 115301 (2016)
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Problems with Viscosity 
Measurement

• What can we say about  the “Local” shear viscosity?

– Inverting cloud-averaged data
– Local ratio of shear viscosity to entropy density
– Comparison with predictions

• We have measured the “Cloud-Averaged” shear viscosity.

• Integration “Volumes” for entropy and viscosity 
may not be the same.



Cloud-Averaged Shear Viscosity
versus Reduced Temperature

Superfluid
Transition

*EoS from Ku et al.,Science, 2012
Reduced temperature
at the trap center
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Obtaining Local Viscosity from
Cloud-Averaged Viscosity Data
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Cutoff radius:

2/1298.0 rRC 

Choose RC to agree with high temperature data:

 rT  as 2/3

Now we can estimate S(q) by image processing methods!

A problem!



Local Shear Viscosity
versus Reduced Temperature

Structure appears at
low temperature

High Temperature Limit
S = 2.77 θ3/2

Bruun, Smith
Phys. Rev. A 75
043612 (2007)



Joseph, Elliott, JET
PRL 115, 020401 (2015)

Cloud-Averaged Shear Viscosity
versus Reduced Temperature

Superfluid
Transition

*EoS from Ku et al.,Science, 2012
Reduced temperature
at the trap center

Shear
viscosity
 n

Integrated local viscosity



Local Shear Viscosity
(Comparison to Theory)

“Measured”

Kinetic theory
S = 2.77 θ3/2

Guo et al., PRL 2011

Enss et al., Annals 2011
(Diagrammatic Kubo 
formula)

Wlazłowski et al., PRL 
2012 (Monte Carlo)



*EoS from Ku et al., Science, 2012

Ratio of the Local Shear Viscosity 
to the Entropy Density*

KSS limit



“As a result the integral equation [3] 
belongs to a class of numerically ill-posed
problems. Therefore, the use of special 
techniques is warranted in order to extract 
numerically stable results.”

JET:

“Now we have  numerically ill-posed measurements 
to compare to numerically ill-posed predictions!”

Summary: Image Processing

Quote on extrapolating QMC data 
in a recent viscosity theory paper:



Summary

• Scale invariance in expanding Fermi gases:
– “Ballistic” flow of resonant, hydrodynamic gas
– Bulk viscosity very small compared to shear viscosity       

• Testing  “string” theory
– Scale invariant hydrodynamics and thermodynamics       

• Perfect fluidity and shear viscosity:
– Need for direct measurement of local shear viscosity
– Need for non-relativistic conformal field   

theory or a trapped “relativistic” gas



1D Flow in a Rectangular Pipe

Use a micro-mirror array to
create a four sheet repulsive 
optical potential: 

Camera



December 2010 Celebration!

Elliptic Flow Birthday Cake!



Birthday Party December 2015



Bulk Viscosity zB
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q = reduced temperature, 
a = s-wave scattering length,
kF = local Fermi wave vector
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