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Abstract

The use of stochastic processing hardware and low precision arithmetic in atmospheric mod-
els is investigated. Stochastic processors allow hardware-induced faults in calculations, sacrific-
ing bit-reproducibility in exchange for improvements in performance and potentially accuracy
and a reduction in power consumption. A similar trade-off is achieved using low precision arith-
metic, with improvements in computation and communication speed and savings in storage and
memory requirements. As high-performance computing becomes more massively parallel and
power intensive, these two approaches may be important stepping stones in the pursuit of global
cloud resolving atmospheric modelling.

The impact of both hardware induced faults and low precision arithmetic is tested using the
Lorenz ’96 model and the dynamical core of a global atmosphere model. In the Lorenz ’96
model there is a natural scale separation, the spectral discretisation used in the dynamical core
also allows large and small scale dynamics to be treated separately within the code. Such scale
separation allows the impact of lower-accuracy arithmetic to be restricted to components close
to the truncation scales, and hence close to the necessarily inexact parametrised representations
of unresolved processes. By contrast, the larger scales are calculated using exact arithmetic.
Hardware faults from stochastic processors are emulated using a bit-flip model with different
fault rates.

Our simulations show that both approaches to inexact calculations do not substantially affect
the mean behaviour, provided they are restricted to act only on smaller scales. By contrast, results
with inexact calculations can be superior to those where smaller scales are parametrised. This
suggests that inexact calculations at the small scale could reduce computation and power costs
without adversely affecting the quality of the simulations. This would allow higher resolution
models to be run at the same computational cost.

Keywords: Stochastic processor, scale separation, atmospheric models, spectral discretisation,
Lorenz ’96, single precision

1. Introduction

Energy demands and error resilience are two of the major challenges to be overcome in the
building of “exascale” high-performance computing (HPC) hardware, planned to be realized
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in 2020 [1]. An exascale HPC system is able to perform 1018 floating-point operations per
second. Power consumption is already one of the major cost factors with modern HPC systems.
Traditional processor design uses rather large tolerances to prevent natural fluctuations from
impacting on the results of calculations. This ensures that every run of a programme produces
exactly the same results – termed bit-reproducibility. Guarding against such fluctuations, which
can have causes as diverse as thermal noise and cosmic ray impacts, requires that hardware be
run at a higher voltage than otherwise necessary.

Through a suitable redesign of the processing hardware, a number of groups have demon-
strated the possibility of a trade-off between exactness of computations and power consumption
[2, 3, 4]. By relaxing the requirement of bit-reproducibility, HPC systems with much lower en-
ergy requirements become possible, with reductions in the costs of manufacturing, verification
and testing [5]. While the work on such approaches is at an early prototype stage using simplified
architectures, results suggest that power consumption could be reduced, on average, by anything
from around 12–20% [3, 6] at low fault rates (1–2%) up to about 90% (at a fault rate of 10%,
[7]).

These reductions in power requirements are achieved through voltage over-scaling – reduc-
ing the voltage applied to the processor beyond that at which all computation paths proceed
successfully at a given clock-speed. The requirements of such an approach are that calculations
degrade “gracefully” as this over-scaling is applied: rather than the computation failing entirely
or producing a meaningless result when voltage is reduced, at least some accuracy remains even
when the result is incorrect [8]. A change in the processor architecture can reduce the fault rates
for reduced voltages. This effort is currently an active area of research, without a clear design
emerging for such imprecise, or stochastic processors.1 Nevertheless, data from early investiga-
tions can be used to construct a fault model which is used to emulate the effects of running code
on such processors.

In weather and climate science, numerical models are a very important ingredient for fore-
casts and predictions. The HPC systems that are used to run climate and weather predictions
are among the fastest computers in the world, but current computing power is still not sufficient.
Higher computing performance allows higher resolution, and the resolution in state-of-the-art
atmospheric simulations is still far from being adequate [9].

One of the key justifications for the development of approximate computing techniques and
low-precision arithmetic lies in the nature of the parametrisation problem for weather and climate
models. It has been argued elsewhere [10, 11] that the parametrisation problem is fundamentally
stochastic in nature. Forecast systems using stochastic parametrisation have been shown to lead
to more reliable forecasts and to reduced systematic errors [12]. Stochasticity in the representa-
tion of sub-grid processes will necessarily induce stochasticity in the elements of the dynamical
core. We can expect induced stochasticity to be relatively strong near the truncation scale of a
dynamical core, but relatively weak at large scales. As such, the use of double precision bit-
reproducible dynamics for scales near the truncation scale will introduce unwarranted precision
into the dynamical-core computations. That is to say, current dynamical cores may be over-
engineered, given the inherent inaccuracy of the parametrisation problem. If we can relax the
exactness of the dynamical core in a scale-selective fashion, we may be able to develop much
higher resolution models, for a given computational resource. Consistent with this, a recent

1It is the view of the authors that the best term to describe such hardware is “imprecise”, rather than “stochastic”.
As it is the convention in the computer science community which is working on the design of this hardware however,
“stochastic” will be used from now on.
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paper showed that a decrease in precision on the software level can lead to a decrease of the
computational cost without degrading the quality of the model simulations, using an inexact,
fast Legendre Transform. The increase in performance allows simulations with the forecasting
model of the European Centre for Medium-range Weather Forecasting (ECMWF) with higher
resolution (up to T7999) than possible with a common Legendre Transform [13].

Against the background of a severe demand for computing power and the trend towards
the use of stochastic methods in weather and climate models for physical reasons, stochastic
processors seem to be a promising tool for atmospheric simulations. Stochastic processors not
only have the potential to significantly decrease the energy cost, or increase the performance, it
is furthermore possible that the “random noise” introduced by the faults of the processors could
bring a benefit to the model simulations and allow for hardware-based ensembles. To date very
little is known about the behaviour of numerical simulations, particularly those of atmospheric
dynamics, when computed on stochastic hardware. Without further investigation, it is unclear
whether such simulations can be run successfully without crashes or instabilities, or what could
be done to make current code robust in the presence of hardware-induced faults.

This paper records the first attempt to apply emulated stochastic processors to an atmospheric
simulation. The code of a “toy” model for atmospheric dynamics (Lorenz ’96) and of a dynam-
ical core of a spectral atmospheric model (the IGCM, see Section 4) is modified to emulate
the effects of a stochastic processor. This work follows the approach proposed in [11] in that
the small-scale (high-wavenumber) dynamics are affected by the stochastic hardware emula-
tion, while the large-scale (low-wavenumber) components are calculated exactly. This respects
the fact that small-scale dynamics close to the truncation scale are anyway inexactly computed,
whereas the large-scale dynamics are crucially important. The Held-Suarez test-case for atmo-
spheric simulations is evaluated [14].

The emulator for stochastic processors can also be used to emulate the use of scale-dependent
low-precision arithmetic in model simulations. In modern HPC systems, communication and
storage costs contribute more and more to the power and time costs of simulations. The use of
low precision numbers to store small-scale components could reduce these costs substantially,
while not significantly impacting on the accuracy of calculations. We examine the impact of
using low-precision representations for small-scale components in the IGCM using the same test
case.

Section 2 describes the fault model used to emulate stochastic processors and low precision
calculations. Section 3 presents the investigation of the Lorenz ’96 model, including a description
of the model and the results with emulated stochastic processors. In section 4 a short descrip-
tion of the atmospheric model IGCM is given, the validity and feasibility of scale-separation is
discussed, and the simulations and results for emulated stochastic processors and low precision
arithmetic are presented. A discussion of the results and an outlook towards future investigations
and research is given in section 5.

2. A fault model for stochastic processors and low precision floating-points

Numbers stored by computers and used for calculations must be represented by a finite se-
quence of bits, each either 1 or 0. Two main types of representation are used, integer and floating
point. According to the IEEE754 standard, a double precision floating-point number x is repre-
sented by a sequence of 64 bits. The first of these is the sign bit, denoted s, which is followed
by 11 bits which comprise the exponent, denoted c10, c9, . . . , c0. The remaining 52 bits are the
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mantissa or significand, denoted b−1, b−2, . . . , b−52. The relationship between x and its bit repre-
sentation as s, ci and b−i is given by

x = (−1)s

1 + 52∑
i=1

b−i2−i

 2E , where E =

 10∑
i=0

ci2i

 − 1023.

This work focuses on the effects of transient faults which alter the results of floating-point
computations. Other manifestations of faults, such as memory corruption or control flow devia-
tions, may be overcome using simple, low-overhead techniques. Such techniques have long been
an active area of research, [15, 16, 17, 18, 19].

In this paper, we adopt the following fault model: when a fault occurs in a calculation, the
impact of the faulty hardware is modelled by randomly flipping one bit in the significand of the
result, without any impact on the exponent or sign bits. This model follows from results in [20],
and is also used in [21]. As bit flips in the sign or exponent bits tend to produce catastrophic
errors and crashes, it is supposed that future designs will seek to preserve this behaviour. In [20]
it is further observed that such bit-wise errors tend to be distributed among the most- and least-
significant bits. To reduce the complexity of the fault model we allow faults to occur with equal
likelihood at any position along the significand, so that a fault consists of flipping a randomly
chosen bit from the 52 bits of the significand of the result of a calculation (the b−i above).

A stochastic processor is emulated using the following model to inject faults into calculations:

1. An average fault rate, 0 ≤ p ≤ 1, is specified.
2. After every floating-point operation (including basic algebraic operations such as addition

and multiplication as well as standard library functions like sine and cosine) it is randomly
decided whether a fault has occurred (a Bernoulli trial with probability p).

3. If a fault is indicated, a position for the fault is randomly chosen from a uniform distribu-
tion over the integers 1–52. The bit at this position in the significand of the result of the
calculation is changed – a 1 becomes a 0 or vice versa.

It is assumed that initialisation, output, and testing will be performed on exact hardware,
therefore no faults are introduced in these parts of the code. This supposes an approach with
both exact and inexact hardware, with programming control over which portions of the code to
execute on which hardware.

The emulator for stochastic processors can also be used to emulate the use of low precision
floating-point arithmetic and storage. Numbers stored at lower precision will consist of shorter
bit sequences. A crude representation of lower precision is to take a longer sequence and truncate
the accuracy of this sequence by “flipping” a particular bit 50% (on average) of the results of
floating-point operations. This destroys the precision of the floating-point number beyond the
switched bit. Tests here truncate the significand to 6 usable bits, a very severe restriction of
precision (compared even with single precision floating point representations which use 23 bits
for the significand). We do not reduce the range of the exponent, but we expect that bits can be
reduced for the exponent as well. For example, a 12-bit floating-point system with 1 sign bit, 5
exponent bits and 6 significand bits could store numbers between 10−4 and 104 approximately,
albeit at very low precision.
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3. The Lorenz ’96 model

Two models are referred to as the Lorenz ’96 model (or sometimes the Lorenz ’95 model),
both introduced by Lorenz in a talk and associated paper (originally a technical report, eventually
published as [22]). The two models can be seen as coarse discretisations of atmospheric flow on
a line of latitude, supporting complicated wave-like and chaotic behaviour [23, 24]. Both models
have been used widely as test-beds for data assimilation methods [25, 26] and for closure or
parametrisation schemes [27, 28, 29, 30]. The second model, called the two-level Lorenz ’96
model, schematically describes the interaction between small-scale (eddy) waves with larger
scale motions. Large scale motions are described by variables Xk, k = 1, . . . ,K and are coupled
to small-scale variables Y j, j = 1, . . . ,KJ.

dXk

dt
= −Xk−1(Xk−2 − Xk+1) − Xk + F − hc

b

kJ∑
j=J(k−1)+1

Y j (1)

dY j

dt
= −cbY j+1(Y j+2 − Y j−1) − cY j +

hc
b

Xint[( j−1)/J]+1 (2)

A schematic showing the coupling of the large- and small-scale variables is shown in Figure
1. The variables are coupled together periodically, so that waves may propagate around a circle
both in the Xs and the Ys. The parameters specify the coupling strength (h) and time- and space-
scale separations (c and b respectively) between the X and Y variables. The large-scale forcing,
F, could be an arbitrary function of time, here we use a constant forcing. The parameters are
chosen as in [31], which corresponds to relatively large separation of length-scales (b = 10),
straightforward coupling (h = 1) and strong forcing (F = 10). Two values of the time-scale
separation are investigated: c = 10, which is a large separation, and a more moderate c = 4.
Each large-scale variable is coupled to 32 small-scale variables (J = 32) and there are 8 of these
(K = 8) leading to a total system size of K + KJ = 264 variables. These two combinations
of parameters both produce chaotic behaviour with irregular aperiodic waves and sensitivity to
initial conditions.

Figure 1: Schematic of the Lorenz ’96 model, after [30].

In this study, the two-level Lorenz ’96 model (referred to from now on as L96) will be used
to investigate the effects of hardware faults. The faults will be allowed to affect only the smaller,
faster scales (the Y j), and the impact on the simulation of the larger scales (the Xk) is considered.
Here we focus on “climatic” effects: Does the introduction of faults at smaller scales impact on
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the long-term statistics of the larger scales. Emulated low precision arithmetic applied to the
Lorenz ’96 model is not presented.

3.1. Simulations and results
The simplicity of the L96 system allows large ensembles of simulations to be performed over

a very long time in order to build up reliable climate statistics. A single initial condition was
obtained by “spinning-up” the unperturbed system, and this was used for all ensemble members.
Each ensemble member evolves the L96 system through 20000 model time units (according to
the original paper, [22], one model time unit corresponds to approximately 5 atmospheric days),
with 50 sample points per time unit (one sample every 20 numerical time-steps). The evolution
uses the common 4th order Runge-Kutta scheme. This scheme involves 4 evaluations of the
right-hand-side functions every time-step, each of which consists of six multiply-add operations
(i.e. operations of the form y← a × x + b). The emulated fault model is applied to each of these
operations in the Y portion of the RHS calculation.2

For each parameter case (c = 10 and c = 4) and fault rate an ensemble of 100 simulations
was run. Ensemble results are compared with both a fault-free simulation and the behaviour
of a stochastically parametrised simulation. The stochastic parametrisation does away with the
Y variables completely, replacing the coupling term in the X equations with a formula which
models the missing contributions. Such parametrisations are presented in [31], and the simple
AR(1) additive version from that work is used for comparison.

Ensemble averages were taken for the various diagnostics and compared with the fault-free
run and stochastically parametrised results. For both of the two parameter cases, fault rates of
20% are used. For each faulty run, a random integer k ∈ {1, . . . , 8} is chosen, and the statistics are
calculated for Xk with this k. Power spectral density, autocorrelation and a kernel density estimate
of the PDF of values taken by this Xk are calculated in Python.3 For the cross-correlation and 2d
PDF, the adjacent k is used.

Figure 2 (a–f) shows the results for the c = 10 case. Here, there are some clearly defined
wave modes, seen in the spectral peaks and oscillating auto- and cross-correlations. The faulty
simulations stay very close to the “truth”, and the ensemble standard deviation of each statistic is
small: about 1% for the power spectrum, correlations and 1d PDF, rising to around 5% for the 2d
PDF estimate. For all results the faulty calculation significantly outperforms the stochastically
parametrised version.

The c = 4 case is shown in Figure 3 (a–f). The dynamics here are more strongly chaotic,
with no clear spectral peaks and rapidly decreasing auto- and cross-correlations. The correlation
figures show some deviation from the fault-free case at moderate lags (2–3 model time units),
but at these lag times the correlations have already decayed substantially, so little information is
lost.

4. The Intermediate Global Climate Model (IGCM)

In this section, we will investigate the use of emulated stochastic processors and low-precision
arithmetic in a dynamical core of an atmospheric model. The section starts with a short descrip-

2Note that this means there are 24 such operations per Y-variable per time-step. At the fault rates considered here
there is a strong probability that every Y-tendency is affected by faults every time-step.

3The gaussian-kde routine from SciPy is used for the 1d and 2d kernel density estimates. The MatPlotLib psd routine
calculated the power spectral density and the correlations are calculated using Fast Fourier Transforms.
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tion of the model, the used test-case, and the setup of the simulations with imprecise processing.
Afterwards, the numerical results are presented.

4.1. Model description and scale separation

The Intermediate Global Climate Model (IGCM), sometimes called the Reading Spectral
Model, is a three dimensional model of the global atmosphere [32, 33, 34, 35]. The IGCM
simulates the primitive equations in σ-coordinates on the sphere. The set of equations is outlined
in Appendix A.

In IGCM the equations are discretised using a spectral discretisation scheme, which trans-
forms between spherical harmonic and grid-space representations in every time step. The trans-
formations are necessary since the tendencies of the non-linear terms of the equations of motion,
such as

(
U2 + V2

)
, UTA, Fu, and ∂(VTA)

∂µ
, are calculated in grid-point space. The calculated ten-

dencies are than transformed back to the space of spherical harmonics, and used to calculate
the right-hand side of the equations of motion, when time stepping schemes are performed. In
full atmosphere models, most of the parametrisation schemes and the tracer dynamics are also
calculated in grid point space. In order to compute the grid-space representation from the repre-
sentation as spherical harmonics, first a Legendre transform (LT) and then a Fourier Transform
(using an FFT) are applied in succession. These transforms are applied in reverse order to return
to the space of spherical harmonics.

In the following, we consider the simulator as comprises of three portions. The first consists
of all operations in spectral space, and the Legendre Transform operation, the second is the FFT,
and the third is the non-linear calculations in grid-point space. The three portions will be denoted
SS & LT, FFT and NL, respectively.

The two transforms form a large part of the computational workload. Table 1 shows the pro-
portion of the time of the full simulation spend in each portion of the code at different resolutions.
The resolutions are listed by a ‘T’ followed by the wavenumber at which the spectral series of the
spherical harmonics is truncated. The ‘T’ represents the use of a triangular truncation [32]. The
separation into large- and small-scale components is straightforward when dealing with spectral
components (as in the SS & LT column in Table 1), and would also be possible if a crude dis-
crete Fourier transform were used. The nature of the FFT algorithm makes scale-separation much
more difficult and less worthwhile since wavenumber components are rearranged into pairs, each
of one small and one large wavelength (see for example [36] for a description of the FFT). Thus
no clear “small-scale” calculations can be distinguished in the NL and FFT portions of the sim-
ulation.

Table 1: Distributions of computation costs for different resolutions of IGCM. All simulations are performed with 20
vertical layers.

Resolution SS & LT FFT NL
T21 41% 35% 23%
T31 45% 35% 20%
T42 48% 33% 19%
T84 64% 25% 11%
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The proportional costs strongly depend on the horizontal resolution, and different parts of
the computation show different scaling behaviour with the spectral wave number N at which the
series is truncated. While the LT scales like O(N3), the FFT scales as O(N log N). It is therefore
not surprising that the SS & LT portion of the code makes up an increasingly large proportion of
the workload as the resolution is increased.

The distribution of the workload in a full, high resolution simulation of the atmosphere is
quite different compared to that of the low resolution dynamical core. For the non-hydrostatic
Integrated Forecasting System (IFS) developed at the ECMWF, the computational cost for the
FFT compared to the LT is about 2:3 at a resolution of T799, and about 1:3 at a resolution of
T3999. The relative workload in grid-point space is much higher for IFS than for IGCM, due to
parametrisation schemes and tracer dynamics, and forms about 60% of the computational cost for
simulations at T3999 (Nils Wedi personal communication). Another major difference between
the IFS and the version of the IGCM used here is the use of a reduced Gaussian grid so that the
IFS has fewer grid-points near the poles, [37].

4.2. Test-case and simulations

The Held-Suarez test is often used to validate the behaviour of dynamical cores of atmo-
spheric models, [14]. The test involves relaxation to a prescribed, zonally symmetric tempera-
ture field. We simulated the Held-Suarez case at horizontal resolutions of T31 and T42 with 20
vertical levels. The first 1000 days of simulation time were discarded as spin-up time, with the
results drawn from the following 10000 days.

Running the entire IGCM dynamical core with emulated fault injection or strongly reduced
precision caused the code to crash almost immediately. Only when the emulation was applied
only to certain portions of the code was it possible to obtain meaningful results at certain fault
rates and truncation levels.

The following simulations were carried out:

Case 0: Control simulations at T31 and at T42 resolutions. We performed two T42 control sim-
ulations with different initial conditions and one simulation in which we used 4th order
diffusion with six hour diffusion time scale instead of the 8th order diffusion with 2.4
hours diffusion time scale which was used for all other simulations.

Case 1: Two simulations at T42 in which the NL portion of the code uses the emulated stochastic
processor or emulated 6-bit precision. The remainder of the code uses exact processing.
In this case 18% of the floating-point operations are carried out through the emulated fault
model.

Case 2: Two simulations at T42 in which the SS & LT portion for total wave-numbers between
32 and 42 and the NL portion use the emulated stochastic processor or emulated 6-bit
precision. This increases the proportion of operations using the emulator to 31%.

Case 3: Two simulations at T42 in which the SS & LT portion for total wave-numbers between 32
and 42 and the NL and FFT portions use the emulated stochastic processor or emulated
6-bit precision. 84% of the floating-point operations are performed with the emulator.

In the following discussion we will refer to cases 1, 2, and 3 as given above. A fault rate
of 10% was stable, while 30% caused the code to crash. Similarly, truncating floating-point
precision to 6 bits in the significand worked, while truncating to 4 bits caused a crash.
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4.3. Results with emulated stochastic processor

Figure 4 shows the resulting zonal- and time-mean zonal velocity for all of the above cases at
a fault rate of 10%. The differences between cases 1, 2 and 3 and the T42 control run are hardly
noticeable. Differences are plotted in Figure 5, where additionally we show results from a fault
rate of 1%. The difference between cases 1, 2 and 3 at the 1%, and case 1 at the 10% fault rate
have the same magnitude as the difference between the two T42 control runs. It is very clear that
in case 3, where the FFT as well as the SS & LT and NL parts are faulty, the error is increased at
10 % fault rate. For all cases, the changes are smaller than the changes obtained when performing
simulations with 4th order diffusion (instead of 8th order diffusion). The changes for case 3 with
10 % fault rate show a similar pattern to the changes we get when we use the different diffusion
scheme, projecting strongly onto the major mode of annular variability.

To evaluate the impact of the stochastic processing on the representation of eddies, the tran-
sient eddy-momentum was calculated as [u′∗v′∗], where u and v are the zonal and meridional
wind, the overbar and square brackets denote time-averaging and zonal-averaging, and the prime
and asterix denote deviations from the time and zonal averages, respectively. The same diagnos-
tic was used in the Aqua-Planet Experiments (APE) for model intercomparison [38]. Figure 6
shows the results of this diagnostic for the various cases. Figure 7 shows the differences between
the transient eddy-momentum of the simulations in Figure 6 and a reference T42 simulation with
different initial conditions. Although changes can be seen for case 2 and 3, especially for the
simulation in which the FFT is also performed on the stochastic processor, the changes do not
exceed the impact of changing the diffusion scheme.

Figure 8 shows the daily mean of the horizontal kinetic energy spectra for the different cases
at the tenth vertical level (at a standard height around five kilometers) and a fault rate of 10%.
Again it can be seen that the errors in the calculations with a stochastic processor produce small
changes in the results for cases 2 and 3, mostly for the simulation in which the FFT was per-
formed on the emulated stochastic processor, but they do not lead to a large change in the spec-
tra, and the results are significantly improved compared to the exact simulation with a spectral
resolution of T31.

4.4. Results with emulated low precision

The same test cases were simulated (case 1-3), this time the emulator reduces the precision
of floating-point calculations. The emulation affected the significand of floating-point numbers,
polluting the representation beyond the 6th bit of the significand.

The mean zonal velocity shows little difference caused by low precision at small scales.
Figure 9 shows the differences between a T42 control simulation and each low precision test
case, and compares them with the difference between two T42 control runs. All cases show a
very similar magnitude effect as the difference between the two T42 runs. The differences in the
transient eddy-momentum are also very small, as can be seen in Figure 10. Figure 11 shows that
the effects on the energy spectra are also negligible.

5. Conclusion and Outlook

These results suggest that the use of imprecise computing strategies, particularly focused on
the small-scale dynamics, would be of use in atmospheric simulations and should be further in-
vestigated. Of coarse, a number of criticisms could be made of this work for example with respect
to the low resolution, idealised configuration, fairly crude diagnostics, and the reduction of the
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tests to the dynamical core and a toy model. We still believe that the results indicate the potential
usefulness of such approaches, and advocate for further investigation and experimentation.

The most severe cases presented here (case 3 described above) represent a simulation of
the dynamical core in which 84% of the floating-point calculations are performed through an
emulated stochastic processor or with emulated low precision of only 6 bits in the significand
and would cost far less in terms of energy consumption. The lack of severe penalties were found,
at least for a 1% fault rate, suggest that this is a worthwhile effort. Given a budget for computer
resources, the use of imprecise hardware would allow for higher resolution, with the small scales
imprecisely simulated.

Early efforts with the dynamical core, without scale separation, show that a crude imple-
mentation of imprecise strategies will not pay off. Interesting questions should be looked into
regarding the level of scale separation required and how to efficiently implement numerical al-
gorithms using a mix of exact and imprecise hardware. It does appear that separation into exact
and imprecise scales is a necessary exercise, however a more robust implementation may allow
a variable fault rate across the scales of the simulation. Examining the power consumption of
different parts of the code would also be of benefit in targeting imprecise strategies to where they
would have most impact.

The emulation of low precision floating-point storage and arithmetic employed here is still
very crude, but it shows remarkable results. The impact on all diagnostics was minimal, despite
a rather severe truncation of the data. Since communication and storage are very expensive
components of large HPC systems, especially for weather and climate simulations, the reduction
of bits that need to be stored and communicated seems to have a very high potential.

In future studies we will investigate more sophisticated test cases, perform a more detailed
cost/benefit evaluation and perform similar tests with grid point models. We will apply stochastic
processors in a state-of-the-art atmospheric model (the IFS developed at ECMWF) to test the
possibility of using inexact stochastic processors for “hardware based ensembles” and stochastic
parametrisation.

The results presented here cannot answer the question if it will be possible to use stochastic
processors or heavily reduced precision arithmetic in weather and climate modelling, but they do
show that these methods offer huge potential.
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Appendix A. The model equations

In this section we present the primitive equations which the dynamical core of the IGCM
approximates. A detailed description of the discretisation approach and on the IGCM itself can
be found in [32, 33, 34, 35]. The following set of equations are simulated:
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∂ζ

∂t
=

1
1 − µ2

∂Fv

∂λ
− ∂Fu

∂µ
− ζ − µ
τF
+ K (−1)pd/2 ∇pd (ζ − µ)

∂D
∂t
=

1
1 − µ2

∂Fu

∂λ
+
∂Fv

∂µ
− ∇2

(
U2 + V2

2
(
1 − µ2) + Φ + TR ln (ps)

)
− D
τF
+ K (−1)pd/2 ∇pd D

Fu = Vζ − σ̇∂U
∂σ
− TA

∂ ln ps

∂λ
, and Fv = −Uζ − σ̇∂V

∂σ
− TA

(
1 − µ2

) ∂ ln ps

∂µ

∂TA

∂t
=

1
1 − µ2

∂ (UTA)
∂λ

− ∂ (VTA)
∂µ

+ DTA − σ̇
∂T
∂σ
+
κTω

p
+

TE − T
τE

+ K (−1)pd/2 ∇pd TA

∂ (ln ps)
∂t

= − U
1 − µ2

∂ (ln ps)
∂λ

− V
∂ (ln ps)
∂µ

− D − ∂σ̇
∂σ

∂Φ

∂ (lnσ)
= −T

U = −
(
1 − µ2

) ∂Ψ
∂µ
+
∂α

∂λ
, and V =

∂Ψ

∂λ
+

(
1 − µ2

) ∂α
∂µ

ζ = 2µ + ∇2Ψ, and D = ∇2α. (A.1)

Here, ζ is the absolute vorticity, D is the horizontal divergence, λ is the longitude, φ is the
latitude, µ is sin φ, Φ is the geopotential, τF is the time scale for Rayleigh friction, K is the
coefficient for diffusion which is dependent on the diffusion time scale, pd is an even number
that fixes the order of diffusion, U and V is the velocity along the longitude and latitude times
cos (φ), the temperature is given by T = TR(σ) + TA, where TR is a reference temperature and
TA is the temperature anomaly, p is pressure, ps is the surface pressure, σ is equal to p

ps
, ω is the

vertical velocity, TE is the temperature pattern used for Newtonian cooling, τE is the time scale
of Newtonian cooling, Ψ is the streamfunction, and α is the velocity potential.
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Figure 2: Faulty results from the c = 10 case with 20% fault rate. Fault-free lines are in blue, ensemble average faulty
results in red, reference stochastic results are the black dashed lines. Fault-free and faulty lines nearly coincide for (a)–
(d). Some slight de-correlation is seen in the autocorrelation (b) and cross-correlation (d), but this is still small after 5
model time units (25 atmospheric days). The joint probability density estimates of neighbouring X variables are shown
for fault-free (e) and faulty (f) runs at the end.
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Figure 3: Faulty results from the c = 4 case with 20% fault rate. The lower time-scale separation changes the dynamics
significantly from Figure 2, but the faulty simulations still remain remarkably consistent with the fault-free run, and
significantly better than the stochastic run.
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Figure 4: Mean zonal velocity for control runs (case 0) at T31 and T42 and with 4th order diffusion (top row, left–right)
and for cases 1, 2 and 3 (bottom row, left–right) using an emulated stochastic processor and 10% fault rate.
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Figure 5: Differences in mean zonal velocity between the T42 control run and other simulations. The top row shows
control runs at T31 and T42, and a T42 run with 4th order diffusion. The second row has differences with cases 1, 2 and
3 for a fault rate of 10%. The bottom row is the same, at a fault rate of 1%.
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Figure 6: Transient eddy-momentum for control runs at T31 and T42 and with 4th order diffusion (top row, left–right)
and for cases 1, 2 and 3 (bottom row, left–right) using an emulated stochastic processor and 10% fault rate.
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Figure 7: Differences in transient eddy-momentum between the T42 control run and other simulations. The top row
shows control runs at T31 and T42, and a T42 run with 4th order diffusion. The second row has differences with cases 1,
2 and 3 for a fault rate of 10%. The bottom row is the same, at a fault rate of 1%.
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Figure 8: Daily mean of the energy spectra for cases 1, 2 and 3 with an emulated stochastic processor at a fault rate of
10% (red; solid, dashed and dotted) and control runs at T31 and T42 and with 4th order diffusion (black; dashed, solid
and dotted resp.).
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Figure 9: Differences in mean zonal velocity between the T42 control run and other simulations. Top left is the difference
between two T42 control runs, top right is case 1. Case 2 and 3 are on the bottom row. All perturbed cases use the
emulated 6-bit significand. To allow comparisons, the same colour scheme is used as in Figure 5.
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Figure 10: Differences in transient eddy-momentum between the T42 control run and other simulations. Top left is the
difference between two T42 control runs, top right is case 1. Case 2 and 3 are on the bottom row. All perturbed cases use
the emulated 6-bit significand. The colour scheme from Figure 7 is re-used to allow direct comparisons.

 0.001

 0.01

 0.1

 1

 10

 100

 1  10

E
i

total wavenumber n

T31 control
T42 control

Case 1 with 6 bit sig.
Case 2 with 6 bit sig.
Case 3 with 6 bit sig.

Figure 11: Daily mean of the energy spectra for cases 1, 2 and 3 for a 6 bit significand (red; solid, dashed and dotted)
and control runs at T31 and T42 (black; dashed and solid resp.). The spectra of cases 1, 2 and 3 lie on-top of the spectra
of the T42 control simulation.
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