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“You can thank your lucky stars that you are not economists. Those poor souls don’t even
know their equations!” Sir John Mason, Director-General Meteorological Office, to his
1977 graduate intake.

“I believe that the ultimate climate models..will be stochastic, ie random numbers will
appear somewhere in the time derivatives” Lorenz (1975).



Abstract

There is no more challenging problem in computational science than that of estimating, as
accurately as science and technology allows, the future evolution of Earth’s climate; nor indeed
is there a problem whose solution has such importance and urgency. Historically, the simulation
tools needed to predict climate have been developed, somewhat independently, at a number
of weather and climate institutes around the world. Whilst these simulators are individually
deterministic, it is often assumed that the resulting diversity provides a useful quantification of
uncertainty in global or regional predictions. However, this notion is not well founded
theoretically and corresponding “multi-simulator” estimates of uncertainty can be prone to
systemic failure. Separate to this, individual institutes are now facing considerable challenges
in finding the human and computational resources needed to develop more accurate weather
and climate simulators with higher resolution and full Earthsystem complexity. A new approach,
originally designed to improve reliability in ensemble-based numerical weather prediction, is
introduced to help solve these two rather different problems. Using stochastic mathematics,
this approach recognises uncertainty explicitly in the parametrised representation of
unresolved climatic processes. Stochastic parametrisation is shown to be more consistent with
the underlying equations of motion and, moreover, provides more skilful estimates of
uncertainty when compared with estimates from traditional multi-simulator ensembles, on
timescales where verification data exists. Stochastic parametrisation can also help reduce long-
term biases which have bedevilled numerical simulations of climate from the earliest days to
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the present. As a result, it is suggested that the need to maintain a large “gene pool” of quasi-
independent deterministic simulators may be obviated by the development of probabilistic
Earth-system simulators. Consistent with the conclusions of the World Summit on Climate
Modelling, this in turn implies that individual institutes will be able to pool human and
computational resources in developing future-generation simulators, thus benefitting from
economies of scale; the establishment of the Airbus consortium provides a useful analogy here.
As a further stimulus for such evolution, discussion is given to a potential new synergy between
the development of dynamical cores, and stochastic processing hardware. However, it is
concluded that the traditional challenge in numerical weather prediction, of reducing
deterministic measures of forecast error, may increasingly become an obstacle to the seamless
development of probabilistic weather and climate simulators, paradoxical as that may appear
at first sight. Indeed, going further, it is argued that it may be time to consider focussing
operational weather forecast development entirely on high-resolution ensemble prediction
systems. Finally, by considering the exceptionally challenging problem of quantifying cloud
feedback in climate change, it is argued that the development of the probabilistic Earth-system
simulator may actually provide a route to reducing uncertainty in climate prediction.



1. Introduction

The problem of understanding and predicting climate is fundamentally a scientific one, but with
extraordinary relevance for society. However, our understanding and ability to predict climate
is still rudimentary. For example, due to profound uncertainties, primarily with the hydrological
cycle, we are still unable to rule out the possibility that anthropogenic climate change will be
catastrophic for humanity over the coming century, or something to which we can adapt
relatively easily. Hence, whilst climate policy on mitigation or adaptation is rightly based on risk
assessment, the risks cover a very broad range of potential outcomes, presenting a barrier to
clear-cut policy and decision making. How well do we understand these uncertainties? Are they
irreducible? Could the climate science community do better in reducing uncertainty? Key
conclusions of this paper are that whilst there indeed are irreducible uncertainties in predicting
climate, and our understanding of these uncertainties is poor, new techniques promise not only
to improve our ability to quantify climate prediction uncertainties more reliably, these
techniques may actually help reduce uncertainty.

To take this further, the analysis presented in this paper suggests that development of new
scientific tools to quantify uncertainty in predictions of climate more reliably, have implications
for the way in which weather and climate institutes are themselves organised, both internally,
and with respect to one another. For example, it could be argued that the existence of a
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substantia of quasi-independent climate simulators® not only allows an
corresponding multi-simulator ensembles), it also engenders a spirit of competition between
institutes thereby fostering creativity. Whilst these arguments have merits, there are
counterarguments to be discussed in this paper: firstly that multi-simulator ensembles may be
prone to systemic failure due to shortcomings in the basic numerical ansatz used to formulate
all contemporary simulators, and secondly that the limited human and computational resources
available at the institutional level are major obstacles to the development of more accurate
climate simulators.

! Throughout this paper, the word “simulator” is used instead of the more conventional word “model” (cf
Goldstein and Rougier, 2004). This may irritate some readers within the weather and climate community.
However, for the public and many policy makers too, use of the word “model” has a tendency to conjure up a
picture of a child’s toy. Some so-called climate “sceptics” take advantage of this word association in portraying
climate models merely as glorified computer games and not as the sophisticated mathematical representations of
basic laws of physics that they are. When communicating with the public we have a tendency to use our own
jargon, often subconsciously; hence we use the word “model” in public because that’s what we use amongst
ourselves, unaware of these pejorative word associations. Perhaps using the word “simulator” will engender more
respect for these numerical representations. Modern commercial pilots are trained almost exclusively on
simulators; that apparently does not deter the public from flying. (If instead the pilots were trained merely on
“models” perhaps the public would be deterred!) As such, it may be time to start using the word “simulator” in
place of “model” even within scientific discourse.



The new scientific element introduced into this discussion hinges on a developing programme
to reformulate stochastically our weather and climate prediction simulators. This “stochastic”
programme has emerged from the numerical weather prediction (NWP) community (eg Buizza
et al, 1999; Palmer, 1997, 2001), and its relevance to the climate problem can be seen as
exemplifying the “seamless prediction” philosophy (Palmer and Webster, 1993; WCRP, 2005;
Slingo and Palmer, 2011) whereby the insights and constraints of NWP are brought to the
climate table. The outline of the paper is as follows. In Section 2, a number of reasons are
given as to why incremental developments in the status quo for climate simulation science may
not be able to provide the needed improvements in coming years. Section 3 discusses a
programme to reformulate our comprehensive weather and climate simulators stochastically.
Results are presented indicating how ensembles based on a single simulator with stochastic
representations of simulator uncertainty can outperform the more conventional multi-
simulator approach to uncertainty. Discussion of the need to integrate this stochastic approach
into programmes of basic simulator development are discussed in Section 4, using standard
arguments familiar in other areas of physics. Section 5 discusses, briefly, a potential synergy
between the development of probabilistic weather and climate simulators, and an emerging
computer hardware design where exact bit-reproducibility is sacrificed in order to improve
energy efficiency. Section 6 presents an analysis of one obstacle to progress, indeed it is
suggested that it may be time to stop production of a separate deterministic weather forecast,
and to focus entirely on the development of probabilistic prediction systems — this may also
require some evolution of practices in weather forecast offices too. Section 7 presents a vision
for the development of future generation probabilistic weather and climate simulators, using
the establishment of the successful Airbus consortium as an analogy. It is argued, focussing on
the thorny issue of cloud feedback in climate change prediction, that the development of the
probabilistic Earth-system simulator may actually help reduce uncertainty in the magnitude
(and indeed sign) of this feedback. Conclusions are given in Section 8.

A key aspect of this paper is that it provides new scientific arguments to support the
conclusions of the World Summit on Climate Modelling (Shukla et al, 2010) that the community
worldwide should be evolving towards a small number of high-resolution Earth-system
simulators, possibly based the major geopolitical groupings.

Regarding the quotes at the beginning of the paper, the author was very lucky to be one of Sir
John Mason’s new graduate intake in 1977, and has enjoyed the most marvellous career as a
result, at the Met Office, at the European Centre for Medium-Range Weather Forecasts
(ECMWEF), and now at Oxford University. The author agrees with Sir John’s quote at the
beginning of the paper, but only up to a point! And the point, as with so many other points of
foundational importance on prediction and predictability, was first made by Ed Lorenz, with
whom the author has had the privilege to interact during Ed’s many visits to ECMWF.



In the discussion below, the importance and urgency of developing reliable climate simulators —
to inform global policy on climate mitigation, to help society adapt to climate change, and to
assess the impacts of proposals to actively geoengineer climate - will be assumed.

2. Acritique of the traditional deterministic weather and climate simulator

a) The gene pool of “ab initio” climate simulators

Arrhenius (1896) developed the first mathematical simulator to quantify the effects of
anthropogenic climate change. Based on the notion of energy balance in one dimension, the
simulator incorporated both the direct greenhouse effect from increased carbon dioxide, and
the positive amplifying effect of water vapour, the latter through an assumption that as the
atmosphere warms, its relative humidity will remain constant.

The key problem with this approach is that water, unlike carbon dioxide, is not well-mixed in
the atmosphere, and water’s three dimensional distribution, in all its phases, is sensitive to
dynamical effects. The development of “ab initio” climate simulators, where dynamical effects
are represented using the Navier-Stokes equations and notions such as constant relative
humidity are not assumed, began with the work of Phillips (1956), who was able to adapt the
simulators emerging in the rapidly developing field of numerical weather prediction (NWP). The
first projections of anthropogenic climate change using such ab initio climate simulators were
given by Manabe and Wetherald (1975).

Over the years, a diversity of ab initio climate simulators has been produced, as individual
institutes around the world sought to replicate and extend the work of these pioneers. This
diversity (sometimes referred to as a “gene pool”) can be seen as a virtue. By not putting “all
our eggs in one basket”, the diversity of predictions provides an estimate of prediction
uncertainty. For example, results in the IPCC Fourth Assessment Report (Solomon et al, 2007)
are based on a pool of coordinated projections made by some 24 climate simulators developed
in different climate institutes (CMIP3: Meehl et al, 2007). A similar set is currently being made
for the IPCC Fifth Assessment Report.

In addition, the development of such a diversity of simulators engenders a degree of rivalry and
competition between institutes, that may be considered necessary to foster creativity. For
example, there is kudos for the institute whose climate simulator is perceived by the
community as “being the best”, and having a “world leading” climate simulator can be
considered a matter of national and institutional pride.



Maintaining such a diversity means there are relatively few opportunities to pool resources
internationally, and thus to benefit from “economies of scale” when trying to improve these
simulators. Hence, the funding needed to improve an Earth-system simulator must largely be
found at the national level. As such, even if the investment for the supercomputing needed to
make global climate projections at high spatial resolution is small compared with the global
costs of mitigation and adaptation, the investment may indeed be significant compared with
other national funding priorities, especially in (these) times of economic difficulty.

Hence, one is therefore forced to ask two questions. Notwithstanding the benefits discussed
above, is this institutional-based framework unquestionably a good thing, and are the merits of
the “gene pool” incontrovertible? If not, is there an alternative?

b) Determinism, Parametrisation and Scaling Symmetry

All climate simulators used in CMIP3 (and indeed CMIP5) have inherited a basic feature from
early NWP code: determinism. At one level, this is hardly surprising: the underlying partial
differential equations on which the simulators are based (eg the Navier-Stokes equations) are
deterministic. However, the assumption of determinism in the computational code implies that
representations of unresolved processes in such simulators are themselves deterministic. For
example, in his recent essay on the need for improved parametrisation in atmospheric
simulators, Jakob (2010) notes that, since many important processes in the atmosphere remain
unresolved, “itis therefore necessary to represent those subgrid-scale processes as a function
of the grid-scale variables.” In mathematics, a function associates one quantity- the argument-
with another quantity- the value- in the sense that exactly one value is associated with each
argument. This characterises perfectly the conventional approach to parametrisation: the grid-
scale variables determine precisely the grid-box tendency associated with the sub-grid
processes.

The basis for determinism appears superficially solid. Since, unlike those poor economists, we
mostly know our equations at the level of partial differential equations (though see comments
about Earth-system complexity near the end of Section 4), we should therefore know them at
the computational level too, at least at sufficiently high resolution. On top of this,
improvements in deterministic parametrisations have increased the realism of comprehensive
climate simulators enormously since the early days of Manabe and Wetherald, and this increase
in realism has also lead to substantial gains in conventional deterministic skill in weather
prediction (Simmons and Hollingsworth, 2002). Is there any reason to doubt that similar
improvements lie just around the corner?

However, is the argument for determinism unassailable, and is it possible that the assumption
of determinism at the computational level is actually holding back progress in the development



of climate and weather simulators? Let us start by going back to basics. Although the
atmosphere is a compressible multi-phase fluid and indeed a considerable part of its complexity
arises from this, consider for simplicity an incompressible homogeneous fluid for which the
Navier-Stokes equations can be written:

ou
p <— + w. Vu) = —Vp + uV?u (3.1)

where u is fluid velocity, p pressure, p density and p viscosity. These ab initio equations are
solved numerically by truncating the equations using some finite grid, or other finite (eg
spherical harmonic) basis. If we write u(x, t) = u(x,t) + u'(x,t) where the overbar denotes
some Reynolds-average operator, which we assume here to be a gridbox mean, then the
“Reynolds-averaged” form for the Navier Stokes equations above can be written (schematically)
as:
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The effect of unresolved sub-grid processes on the resolved scales are represented by the
guadratic “Reynolds stresses” E written in component form

E; = —pV;(ufu))

Jakob’s definition of parametrisation, applied to these Reynolds stresses, follows a long
tradition in fluid dynamics, including luminaries such as Boussinesq, Prandtl, Smagorinsky (and

many others), in trying to close the Reynolds-averaged equations by representing E as a
deterministic function of the resolved scale variables:

E=Pua)



and where a denotes a number of parameters which can be determined, in principle at least, by
observations and/or theory.

However, a key symmetry of equation (3.1) is associated with scale invariance: if u(x, t), p(x, t)
is a solution to the Navier Stokes equations, so also is

_ o, (XL (2T
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for any T > 0 (Majda and Bertozzi, 2001)

Whilst we would not expect precise scale invariance of this sort to apply to the real atmosphere
(not least because of latent-heating and other diabatic sources), the existence of such scaling
symmetries in the underlying equations is consistent with observations of power-law structure
in the atmosphere. Fig 1 reproduces the celebrated result of Nastrom and Gage (1985) showing
an observational analysis of atmospheric kinetic energy as a function of horizontal scale (shown
in terms of horizontal wavenumber k). This analysis draws attention to two separate power-
law slopes, a “-3” slope at large scales and a “-5/3” slope” at smaller scales. The truncation
scale of all weather forecast simulators, and a number of contemporary climate simulators, lies
within the “-5/3” range. Similar power-law behavior has been seen in cloud data (Rossow and
Cairns, 1995). Whilst there is some disagreement concerning the physical interpretation of
these power laws (see eg Lindborg, 2007), broadly speaking it appears that the “-3” slope is
indicative of quasi-two-dimensional flow dominated by rotation, whilst the “-5/3” slope is
indicative of three-dimensional flow with substantial divergent motion (enhanced by latent
heat release in cloud systems, associated with the compressible multi-phase nature of the
atmosphere).

As first clearly pointed out by Schertzer and Lovejoy (1993), the “deterministic
truncation/parametrisation ansatz” outlined above, is inconsistent with the existence of scaling
symmetries and associated power-law behaviour — for the simple reason that such power laws
preclude any meaningful separation between “resolved” and “unresolved” scales, and hence
between “resolved” and “unresolved” processes. Possibly consistent with this, it can be noted
that some simulators, eg that of ECMWF have difficulty simulating the “-5/3” spectrum, even at
relatively high truncation scales of 10km (Straus, 2011, using data from integrations performed
as part of the Athena project; Jung et al, 2011: Kinter et al, 2011).



It can be argued that the failure of deterministic parametrisations to represent this observed
power law structure is the fundamental cause of systematic model error. For example, in the
IPCC AR4 it is concluded (Solomon et al, 2007; Chapter 8):

“...models still show significant errors. Although these are generally greater at smaller scales,
important large-scale problems also remain. ......The ultimate source of most such errors is that
many important small-scale processes cannot be represented explicitly in models, and so must
be included in approximate form as they interact with larger-scale features. ...consequently
models continue to display a substantial range of global temperature change in response to
specified greenhouse gas forcing. “

Perhaps one could argue that with fine-enough simulator resolution (eg T2047, much higher
than any contemporary climate simulator), large-scale errors associated with any violation of
power-law behavior can be made arbitrarily small. A simple scaling argument (Lilly, 1973, see
also Palmer, 2001) indicates that this is not a reliable conclusion. Let E (k) denote atmospheric
kinetic energy per unit wavenumber, at wavenumber k. We can define a timescale 7(k) in

terms of a length divided by a velocity ie T(k)'”k_%E_%(k). Let us suppose (k) characterises
the time it takes errors at wavenumber k to grow and infect nonlinearly the accuracy of
simulations at wavenumber k/2. As above, suppose we are only interested in large-scale
aspects of the flow, ie wavenumbers less than some k;. We can ask how long it will take before
truncation errors at large wavenumbers 2Vk;, N > 1 will affect large-scale simulations of the
flow. A plausible estimate of this is given by:

QN) =1(2Vk;) + 12Nk )+... T(2%,) = YN _, t(2™k,)

Now if E(k)~k~3 then 7(k) is independent of k and Q(N) diverges as N — co. This suggests
that if the atmosphere was quasi two-dimensional all the way down to very small scales, errors
at small scales could be “shielded” from the large scales, by increasing the simulator resolution
sufficiently. However, if E(k)~k=5/3 then T(k)~k~2/3 and Q(N)~2.7t(k,). There is nothing
especially significant about the precise value 2.7. Hence, let us say that with a -5/3 power law,
the series QL(N) converges to a value less than a few “eddy turn-over times” of k;, as N — oo.
Hence, with a “-5/3” power law, it may be impossible to shield the large scales from truncation-
scale errors, by increasing sufficiently the resolution of the simulator. This analysis is consistent
with the study of Lorenz (1969), see also the more robust analysis of Rotunno and Snyder
(2008) using the surface quasi-geostrophic equations, but has not been proven rigorously from
the underlying 3D Navier Stokes equations. (It is not literally true in the limit where 2Vk; ~k;,



and ky lies in the viscous range of scales; however, it appears to be an open question
asymptotically in the range k; < 2Nk, < ky.) It is worth commenting that the predictability
estimates above do not depend on the mechanism by which the -5/3 power law is established.

Despite this, there are very good reasons for attempting to increase the resolution of
atmospheric simulators as much as possible. Firstly, the higher a simulator’s resolution the
better Earth’s topography and land/sea boundary can be represented. Secondly, high resolution
ensures that Rossby wave breaking, important for the maintenance of blocking anticyclones
and other nonlinear weather-regime phenomena (see Section 7), can be simulated properly.
Thirdly, the higher the resolution, the better the simulator can utilise high-resolution
observations, eg from satellite instruments with small pixel size. Finally, at some stage, high-
resolution simulators will be capable of representing the key atmospheric phenomenon of deep
convection (which, along with baroclinic instability, can be considered one of the core
dynamical modes of atmospheric instability and hence variability). Similar arguments apply to
the oceans too. In addition to these theoretical considerations, regional predictions of climate
change, particularly for precipitation change, have been shown to be sensitive to changes in
resolution, horizontal and vertical (Matsueda and Palmer, 2011; Scaife et al, 2011).

However, a plausible consequence of the analysis above is that as the truncation scale of a
climate simulator moves into “-5/3” range, the effects of the inconsistency of using
deterministic parametrisation cannot be reduced to zero by increasing resolution sufficiently
(building a comprehensive climate simulator whose truncation scale lies in the viscous range is
utterly impracticable in the foreseeable future). By this, it is not to be inferred that the effect of
misrepresenting the small scales will damage the larger scales uniformly in time; that very
pessimistic scenario is inconsistent with the fact that conventional weather prediction
simulators can, from time to time at least, predict large scales very accurately, well beyond the
limit Q(N)~2.7t(k;). That is to say, experience suggests that the rapid upscale error
propagation associated with the “-5/3” spectrum will occur somewhat intermittently (for
example the source of some especially erroneous medium-range weather forecasts over
Europe have been traced to short-range forecast errors associated with intense mesoscale
convection over the US Mid-West). This raises the fundamental question: How can we ensure
that the advantages of integrating simulators at higher and higher resolution will not be
somehow be destroyed by rapid intermittent upscale propagation of error?

As suggested by this analysis, contemporary simulators may have common failings due the
universal use of the deterministic truncation/parametrisation ansatz. This implies that multi-
simulator ensembles may be blind to the consequences of such systemic failings, so that
ensemble agreement cannot be assumed a reliable measure of forecast confidence. Is there
any evidence for this?
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There is some evidence from the poorness of the “attributes curve” in reliability diagrams
(Wilks 2006) from seasonal forecasts of regional precipitation based on DEMETER multi-
simulator ensembles (Palmer et al, 2008). An attributes curve can assess whether, for a
particular forecast event E, forecast probabilities of E are well calibrated against observed
frequencies of E — the technical definition of “reliability”. The attributes curve for a reliable
forecast system should lie on the diagonal. Fig 2 shows an update of such seasonal-forecast
reliability diagrams but based on the more recent ENSEMBLES multi-simulator ensemble
(Weisheimer et al, 2009). Fig 2 shows examples (for seasonal-mean Sahel and North European
rainfall) where the flatness of the attributes curves indicates that the ensemble is extremely
overconfident and hence highly unreliable. The origin of such unreliability is, most likely, an
inadequate representation of simulator error in the multi-simulator ensemble (the author is
unaware of any systematic misrepresentation of observational uncertainty that would lead to
such unreliability).

As discussed in Palmer et al (2008), some of the unreliability of seasonal forecasts arises from
difficulties which climate simulators have in simulating the statistics of weather regimes (Straus
et al, 2007). For example, ability to simulate anticyclonic blocking accurately is a well-known
problem amongst low-resolution climate simulators. However, recent results from the Athena
project (Kinter et al, 2011; Jung et al, 2011) suggest even at higher resolutions, climate
simulators may have difficulty replicating the multi-modal probability distributions of regional
weather regimes (Andrew Dawson, personal communication 2011) even though such multi-
modality is highly significant when diagnosed from reanalysis datasets. As discussed in Section
7, it is suggested that an ability to simulate regional weather regimes accurately will be key to
reducing uncertainty in the cloud feedback problem for predicting global climate change.

In a recent paper, Doblas-Reyes et al (2011) concluded that the dominance of simulator bias in
state-of-the-art coupled ocean-atmosphere simulators is a major impediment to the
investigation of decadal timescale predictability in particular in assessing whether useful
decadal predictions can be made, given our current ability to observe the sub-surface ocean.
Two key points can be made here. Firstly, one of the goals of the emerging programme of
“climate services”, that of providing reliable near-term climate forecast information to a range
of customers, is not likely to be met by current-generation simulators. Secondly, the value of
investment in ocean (and other) observations is not being fully realised because of simulator
bias. This in turn raises the following point. There have been many discussions in the
community about the relative importance of funding Earth observations, vis a vis climate
simulator development. However, this is a false dichotomy; in truth, we will only realise the full
value of investment in Earth observations when climate and weather simulators are of
sufficient quality to be able to ingest and utilise these observations fully (either in
analysis/reanalysis mode, or in predictive mode). If the information content in an observation is
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being lost prematurely due to simulator bias, then the investment in producing this observation
will not have been fully realised.

c) True diversity of the “gene pool” of climate simulators

III

Given the problems above, it is worth asking just how diverse is our “gene pool” of climate
simulators really is. Many climate institutes use the same basic closures in their simulators’
parametrisations, indeed some share the same parametrisations. Estimating the effective size,
Mes , of the CMIP3 multi-simulator ensemble has recently been studied by Pennell and Reichler
(2011) who note that “for the full [CMIP3] 24-member ensemble, this leads to an Me¢s that...lies
only between 7.5 and 9.” They conclude: “The strong similarities in model error structures
found in our study indicate a considerable lack of model diversity. It is reasonable to suspect

that such model similarities translate into a limited range of climate change projections.”

Hence, possibly related to the systemic problems discussed above, the effective size of the
gene-pool is rather small: many of the institutional simulators whose integrations are
submitted to CMIP, are relatively minor modifications of a small number of core simulators.

There are techniques to expand ensemble size by perturbing the parameters a within a given
simulator, according to expert opinion about inherent uncertainty in fixing the values of these
parameters (Murphy et al, 2004: Stainforth et al, 2005; see also Section 4 below). Whilst there
is certainly merit in treating these parameters as uncertain and representing this uncertainty in
“perturbed-parameter” ensembles, evidence to date suggests that adding perturbed-parameter
integrations to a multi-simulator ensemble does not change M by much (Masson and Knutti,
2011).

d) Climate complexity

Notwithstanding the remarks above, there are two fundamental problems that all climate
institutes acknowledge as obstacles to the development of accurate climate simulators:
insufficient human resources and insufficient computing resources. These problems are
especially acute in (current) economically challenged times.

Since the days of Phillips, and Manabe and Wetherald, climate simulators have become more
and more complex. In terms of parametrisations, the sub-grid representations for deep
convection, clear-sky and cloud radiative effects, sub-grid orography, boundary-layer
turbulence, aerosols, cloud microphysics, and so on and so forth, have become immeasurably
more sophisticated (and computationally demanding) since the early days. Moreover, what in
the 1970s were essentially atmosphere-only simulators (eg with simple “slab” oceans and
“bucket” land-surface hydrology) have in the 2010s become fully coupled representations of
the atmosphere, oceans, cryosphere and land surface with a range of biogeochemical processes
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(“Earth-system complexity”). The need to ensure that chemical tracers are properly
represented during simulations, yet at the same time allowing the simulators to run efficiently
on massively parallel computers, means that the numerics of the dynamical cores of weather
and climate simulators have to be extremely sophisticated.

Problems of algorithmic complexity do not stop there. For climate-service applications, shorter-
range decadal predictions require that simulators are initialised with contemporary
observations, implying the need for sophisticated data assimilation schemes for the
atmosphere, oceans and land surface.

Finally, the dynamical cores themselves are increasingly complex as quasi-geostrophic
equations have given rise to the hydrostatic primitive equations, and now to the non-
hydrostatic dynamical cores, needed to be able to probe kilometre truncation scales where
deep convection is at least partially resolved. At these high resolutions, it is a highly nontrivial
problem to ensure that numerical code can run efficiently over the very large numbers of
processors of modern supercomputers (the scalability problem).

Not surprisingly then, climate institutes struggle to find the human resources needed to
develop these manifold elements. On top of this, the computational demands of a
contemporary climate simulator means it is impossible for an institute to develop simulators
both with full Earth-system complexity and with the resolution of a contemporary NWP
simulator, and at the same time run large ensemble integrations from states initialised with
contemporary observations. This extremely important issue has been discussed at length
elsewhere, being a key topic of the major World Summit on Climate Modelling (Shukla et
al,2010; Palmer, 2011).

In the next sections, we discuss a relatively new approach to the representation of unresolved
processes in weather and climate simulators, which may provide a solution to the complex and
challenging problems outlined in this Section.

3. Stochastic Representation of Unresolved Processes

Let us begin by considering a generalisation of the definition of what we mean by
“parametrisation” and frame it, not in terms of functional relationships, but as a constraint on
some prior (eg climatological) probability distribution of sub-grid tendency based on a
knowledge of contemporaneous values of grid-scale variables. An explicit example will be given
below. This automatically suggests we treat the notion of parametrisation as an inherently
probabilistic problem, to be tackled by explicitly stochastic techniques (Palmer, 2001).

There is nothing new in the use of stochastic mathematics to describe climate simulators; the
idea can be traced to Hasselman (1976) who developed an idealised coupled ocean-
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atmosphere simulator in which the entire atmosphere was represented by a simple Markov
process. Using this simulator, Hasselman showed how ocean-atmosphere coupling would
redden the spectrum of atmospheric variability. However, the use of stochastic mathematics in
such earlier approaches, is conceptually different to the concept being explored here:
Hassleman’s simulator is (deliberately) a simplified idealised representation of climate, and the
use of stochastic mathematics made the representation of internal atmospheric variability in
the simulator equations mathematically tractable. Here, we are not interested in mathematical
tractability per se. Rather it is being argued that stochastic mathematics also has an inherent
role to play in comprehensive ab initio weather and climate simulators.

A key conceptual difference between deterministic and stochastic parametrisation is illustrated
in Fig 3. Whilst deterministic parametrisation represents the bulk-average effect of some
putative large ensemble of sub-grid processes occurring on scales smaller than the grid scale,
stochastic parametrisation attempts to represent actual realisations of the sub-grid flow when
no scale separation exists. Fig 3 indicates that the stochastic parametrisations must necessarily
impact directly on scales larger than the truncation scale. This is because, as discussed above,
with power-law behavior uncertainty in sub-grid processes will propagate upscale by nonlinear
dynamical effects (Thuburn et al, 2011). Hence part of the (stochastic) parametrisation process
requires one to represent the effect of uncertainty in the sub-grid processes on the resolved
grid.

In order to quantify the potential benefits of this stochastic approach to parametrisation, it is
useful to consider a reasonably tractable example where we know precisely the “true” system,
which we will attempt to simulate approximately using parametrisations, both deterministic
and stochastic. Consider, then, the set of linked nonlinear ordinary differential equations put
forward by Lorenz (1996):

dX he S

L X (K= X)X P ; Y, (4.1)
’ j=J(k-1)+1

aY hc

dtj = —cbY,, (Yj+2 _Yj—l) -+ b Xint[(j_lw]ﬁ -

Here the X} represent the large, slow scales (analogous to wavenumbers < k;) that we are

interested in, and the Y; represent the small, fast scales (analagous to wavenumbers >

J
2Nk, ) that we wish to parametrise. Here 1 < j < 32, and k is cyclic mod 8. The last term of
the first equation couples the small scales to the large scales; we will call this “the small-scale

tendency”. Below we consider two values of the ¢ parameter: ¢c=10 and c=4; the h, b and F
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parameters are held fixed. When ¢=10, the Y variables typically evolve over substantially faster
timescales than do the X variables, ie there is clear temporal scale separation between these
variables. It will turn out that parametrising the small-scales deterministically will work
reasonably well for this parameter setting. By contrast when c=4, this scale separation is
weaker and the parametrisation problem becomes inherently less deterministic. By way of
analogy, then, we use the values c=10 to mimic the relatively steep “-3” energy spectrum, and
c=4 to represent the relatively shallow “-5/3” energy spectrum of the real atmosphere.

With the true system represented by equations (4.1) and (4.2), we now consider a simulator

17).4
dtk = _Xk—l (Xk—z_Xk+1) - Xk+ F- Pk

P, = (1 + ™ty paet(X,; a) + rd®e

of the “true” Lorenz (1996) system, where the small-scale tendency is parametrised by the
formulae P, (first discussed by Wilks, 2005). Here we have generalized the conventional
deterministic formula P, = PZ¢*(X,; a) using stochastic variables 12** and 7;™“*. A number

of parametrisations are considered: “Deterministic” denotes a deterministic parametrisation

add _ ,.mult
(r™" =n¢

instantaneous small-scale tendency against Xj,; “White Additive” denotes a simple white-noise
term added to the deterministic parametrisation (r;#*? = 0;7/"*!* = 0); “Red Additive”
denotes a red-noise AR1 process added to the deterministic parametrisation; “Multiplicative”

= 0) based on fitting a cubic polynomial in X} to points in a scatter diagram of

denotes a red-noise AR1 process multiplying the tendencies from the deterministic
parametrisation (r,#?¢ = 0; ;" = 0).

We can use this system to illustrate the utility of the probabilistic notion of parametrisation as
defined earlier in this section. Fig 4 shows (solid curve) the unconstrained (ie climatological)
probability distribution of the small-scale tendency term, the last term on the right hand side of
equation (4.1) when c=4. On this figure is plotted the probability distribution of this tendency
when the X variable is constrained to lie in —6 < X}, < —5 (dotted line) and 13 < X, < 14
(dashed line). It can be seen that the constrained probability distributions are quite different
from the climatological distribution. That is, knowledge of the large-scale variable is important
in constraining the prior distribution. However, this knowledge does not constrain the
distribution so much that it collapses to a Dirac delta function — which would be the case if
deterministic parametrisation were accurate. Corresponding hat functions for the putative
deterministic parametrisation, for —6 < X}, < —5 and 13 < X, < 14, are shown in Fig 4 for
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c=4; compared with the constrained probability distributions, these hat functions are quite
obviously too sharp. As such, it can be expected that the simulator with deterministic
parametrisation will perform relatively poorly. Fig 4 also shows that the probability
distributions are sharper for small deterministic tendency suggesting that the simulator with
multiplicative noise parametrisation may be especially skilful.

Fig 5 shows skill score results for a large number of initial-value ensemble predictions (Fig 5a)
and one long climate integration (Fig 5b). Full details are given Arnold (2011). In the initial-value
ensembles, evaluated at t=0.6 time units (perhaps equivalent to about 3 days for weather
forecasting), the initial conditions X, (t = 0) are known perfectly, hence there is no initial
uncertainty, only simulator uncertainty. The solid line denotes the results with c=10, the dashed
line gives results with c=4.For the initial-value problem, we use the Ranked Probability Skill
Score (RPSS: Wilks, 2006) to assess the probabilistic skill in forecasting X,,. For the climate
integrations, we use the Hellinger Distance (related to the more familiar Kolmogorov-Smirnov
Distance; Pollard, 2002) between the “true” and simulated probability distribution of X, values.
Note that the larger the RPSS, the more skilful the forecast, whereas the smaller the Hellinger
Distance, the closer is the simulated probability distribution to the probability distribution of
truth. Again, see Arnold et al (2011) for details. Additionally, for the initial-value ensembles (Fig
5a for c=4) we also show the traditional deterministic score, root-mean-square (RMS) error,
averaged over all the individual forecasts.

A number of interesting results can be concluded from Fig 5:

1) Based on RPSS and Hellinger Distance, and as expected, the c=10 system is “easier” to
parametrise than the c=4 system, and whilst stochastic parametrisation improves forecast skill
for both values of ¢, the improvement is relatively small when c=10. By analogy, we would
expect comprehensive weather simulators to be harder to parametrise deterministically, if their
truncation scales probe the -5/3 part of the spectrum. As discussed above, there is an inherent
tension (perhaps one would even say incompatibility) between high-resolution simulation and
deterministic parametrisation.

2) Based on RPSS and Hellinger Distance, there is an overall strong correlation between
simulator performance in initial value mode, and in climate mode, consistent with the
philosophy underpinning the notion of seamless prediction. That is to say, the performance of
the simulator in climate mode can be gauged by its success in initial-value mode. Of course, in
the real world, one would not expect a one-to-one correspondence between weather and
climate skill, because there are many slow climate process which are not important for weather
prediction. Nevertheless, the results here hint that skill on the weather timescale should be
considered a necessary step for reliable climate prediction.
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3) The link between initial-value skill and climate accuracy is only apparent when probabilistic
measures of skill are used to assess the initial value ensembles. If the more traditional
deterministic RMS error metric is used to assess initial value skill, there is no correlation
between initial value skill and climate skill; indeed the simulator with deterministic
parametrisation appears most “skilful”. As discussed in Section 6, the conclusion to draw from
this result is not that the link between weather and climate skill is metric dependent, but rather
that the RMS error may actually be an inappropriate metric of weather forecast skill. The
physical reason for this is discussed in Section 6 where it is concluded that assessing simulators
based on weather-forecast RMS error may in fact be detrimental to the development of reliable
climate forecast systems.

4) Based on RPSS and Hellinger distance, there is an overall advantage for the red noise
parametrisation over the white noise parametrisation. This is consistent with the discussion
above: in stochastic parametrisation, it is necessary to represent the means by which
uncertainty in the representation of sub-grid processes affects the large-scale flow, on spatial
scales larger than the simulator’s truncation scale, and on timescales longer than the
simulator’s timestep. In Lorenz (1996), correlations between neighbouring X, variables are
small, and, for this particular model, there is not much benefit to the introduction of “spatially-
correlated” noise. However, as Fig 5 shows, there is benefit in representing “temporally-
correlated” noise. In general, for weather and climate simulators, one would expect the noise
to be both spatially and temporally correlated

5) There is an overall advantage for the multiplicative noise parametrisation. This multiplicative
noise parametrisation is essentially that developed and tested in the ECMWF simulator by
Buizza et al (1999).

In the latest version of the ECMWF multiplicative-noise scheme (or SPPT: Stochastically
Perturbed Parametrisation Tendency scheme, see Palmer et al; 2009), the parametrisation is
given by

Xstoch — (1 + rspec'u)Xdet

where XSt°h  denotes the stochastic tendency, X%¢t the total deterministic tendency, rSPé¢
denotes a stochastic spectral pattern generator based on an uncorrelated series of red-noise
processes, one for each spherical harmonic coefficient. The relative amplitude of these red
noise processes in spectral space is such as to produce Gaussian correlations in physical space
(see Fig 6). In the results discussed below, there are two sets of such red-noise processes: one
with 6 hour decorrelation time, the other with smaller amplitude and 30-day decorrelation time
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(see Palmer et al, 2009 for details). Finally, i is an ad hoc parameter which clips the stochastic

tendencies in the stratosphere and in the boundary layer. We return to this "u" parameter
later.

A more overt example of the need to consider the representation of sub-grid uncertainty on the
resolved spatial scales arises in the stochastic backscatter scheme (Shutts, 2005; Berner et al,
2009)

R = <bRDtot>1/2 p
¥ Biot ¥

Here the streamfunction forcing Fy, is associated with an upscale energy transfer when, for
example, divergent kinetic energy associated with deep convection is converted to rotational
kinetic energy during mesoscale organization. This forcing is represented by a stochastic
pattern generator Py (either the spectral generator, cf Fig 6, or an alternative cellular
automaton — it can be noted in passing that cellular automata provide computationally cheap
means to communicate information at the sub-grid level, between adjacent grid boxes). Here
D;,+ denotes the diagnosed energy dissipation from the corresponding deterministic
parametrisations, and B;,; and by are parameters which ensure dimensional consistency and
degree of energy backscatter respectively.

Fig 7 (from Palmer et al, 2009) shows the impact of SPPT on the probabilistic skill of medium-
range forecasts of 850hPa temperature in the tropics using the ECMWF Ensemble Prediction
System (EPS). The results are dramatic. The skill at day two of the probabilistic forecasts
without stochastic parametrisation, is reached at day six with stochastic parametrisation. It is
hard to imagine any parametrisation having such an effect on forecast skill.

The introduction of stochastic parametrisation into the ECMWF simulator has fundamentally
changed the skill of the EPS in more ways than one. Importantly, it has allowed the estimation
of initial uncertainty to be made using ensembles of (4D Var) data assimilations (EDA: Isaksen et
al, 2010). Until recently, EPS initial perturbations were made exclusively using singular vector
analysis (eg Buizza and Palmer, 1995). The reason for this was that if an EPS was based solely on
initial perturbations from ensembles of analyses, these perturbations had to be artificially
inflated in order that EPS spread and skill matched in the medium range. Introduction of
stochastic parametrisation into the data assimilation process (and the use of higher resolution
and hence less damped simulators), has enabled ensemble data assimilation to be used to
generate initial EPS perturbations. Indeed Fig 8 shows the performance of EDA in terms of the
relationship between ensemble spread at T+6hrs, and ensemble mean error. It can be seen that

18



with representation of observation error only, not only is the EDA underdispersive, but also the
EDA spread does not discriminate well between low error and high error short-range forecasts
(it is particularly underdispersive for high error forecasts). By contrast, including SPPT and
backscatter into EDA, not only is the overall level of spread much closer to that of error, the
EDA spread now discriminates well between low and high error short-range forecasts.

Fig 9 shows that EPS-based probabilistic predictions of rainfall over Europe in the medium
range are now extremely reliable.

There is no doubt that ensemble forecasts with stochastic parametrisation are skilful. But are
they more skilful than forecasts using the more traditional multi-simulator concept? This
question, applied to the climate prediction problem, lies at the heart of this paper. Table 1
shows a comparison of probabilistic skill on the monthly timescale (where copious verification
data exists), based on three ensemble forecast systems (see Weisheimer et al, 2011 for details).
The first system is the single-simulator ECMWF seasonal ensemble forecast system with
stochastic (SPPT and backscatter) parametrisation. The second system is a multi-simulator
ensemble comprising the climate simulators that contributed to the ENSEMBLES multi-
simulator ensemble (Weisheimer et al, 2009). The third ensemble is again based on the single-
simulator ECMWEF seasonal ensemble forecast system as above, but with no representation of
simulator uncertainty (ie only initial uncertainty).

Results show that for 7 of the 8 binary forecast events considered (based on climatological
temperature and precipitation terciles over all land points), the single-simulator ensemble with
stochastic parametrisation outperforms the multi-simulator ensemble. For one of the 8 events,
the skill estimates for the stochastic parametrisation ensemble and the multi-simulator
ensemble only differ by the third significant digit. It might be imagined that the key reason that
the single-simulator stochastic-parametrisation ensemble outperforms the multi-simulator
ensemble is that the former has been made with a world-leading weather simulator. However,
if we compare the skill of the multi-simulator ensemble with the skill of the same single-
simulator ensemble without any representation of simulator uncertainty, then it can be seen
from Table 1 that the latter is much the least skilful of the three ensembles for all events
considered.

This indicates that the single-simulator stochastic parametrisation ensemble is not more skilful
that the multi-simulator ensemble because this particular simulator is somehow inherently
better (eg in terms of its deterministic forecast skill) than the other simulators.

In Weisheimer et al (2011), it was also shown that on longer seasonal timescales, stochastic
parametrisation still has the edge against the multi-simulator ensemble for precipitation
forecasts, but not for forecasts of surface temperature. This suggests (see Section 4 below) that
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development of the stochastic approach for the land surface and for the oceans is also likely to
be required in the future. The skill of a perturbed-parameter ensemble was also tested by
Weisheimer et al (2011). The skill scores turned out to be poor, but one cannot rule out the
possibility that this was because the simulator in which the parameters were perturbed was not
state-of-the-art for monthly and seasonal prediction. Further tests are needed within, eg the
ECMWEF system, to evaluate the perturbed-parameter method. It is certainly not inconveivable
that some combination of perturbed-parameter and stochastic parametrisation techniques may
prove optimal.

A key property of stochastic parametrisation is its potential ability to influence the mean state
of the simulator and hence reduce the mean bias of the simulator against observations. That is
to say, the interaction of the imposed noise with the nonlinearity of the simulator can generate
a “rectified” time-mean response. In this way, it is possible that stochastic parametrisation can
help alleviate some of the systematic biases of climate simulators. Fig 10 shows an example of
such alleviation (from Berner et al, 2011, who also show a positive impact of stochastic
backscatter on the mean state of simulations in the tropics).

However, a problem revealed by Fig 10 is that the impact of stochastic parametrisation on
simulations of Northern Hemisphere circulation is very similar to the impact of either increasing
simulator resolution (ie modifying the dynamical core), or modifying the conventional
deterministic parametrisation schemes. Dynamical reasons for this “degeneracy” are discussed
in Palmer and Weisheimer (2011). These explain why improving the fidelity of climate
simulators has been so difficult over the years, and why it is very easy for a simulator code to
contain many sets of “compensating errors”. This is a key reason why data assimilation can
provide such a powerful tool for enabling simulator development whilst minimizing such
compensating-error problems (see Palmer and Weisheimer, 2011 for discussion). This problem
of degeneracy is discussed further in Section 4 below.

4. Stochastic parametrisation at the process level

Despite these rather positive results, stochastic parametrisation is still at a rudimentary state of
development: the stochastic parametrisation concept described above has only been applied to
the atmospheric component of coupled simulators. There is clearly a need to extend the
concept to the oceans, the land surface, the cryosphere, the biosphere and so on. The
techniques which can be used to develop stochastic parametrisations are manifold, and the
logic inductive rather than deductive. A technique of particular relevance is the type of coarse-
grain analysis developed in Frederiksen and Kepert (2006) and Shutts and Palmer (2007).
Moreover, the sort of experimental programmes advocated by Jakob (2010) are just as
important for the development of stochastic parametrisation as for deterministic.
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However, even for the atmospheric component of climate simulators, there is a need for
uncertainty to be incorporated in the development of parametrisation at the process level,
rather than as a “bolt-on extra”. For example, in describing the multiplicative noise
parametrisation in Section 3, reference was made to the ad hoc parameter u which clipped the
stochastic noise both in the boundary layer and in the stratosphere. The parameter was
introduced for plausible reasons, but also because it improved forecast scores. However, one
should not introduce parameters purely because of empirical pragmatism: they must
additionally have some basis in science. For the stratosphere, the scientific basis is not hard to
find. Much of the diabatic heating in the stratosphere is associated with infra-red radiation
emitted by carbon dioxide molecules. However, unlike water, carbon dioxide is well mixed in
the atmosphere, there is little sub-grid variability. Hence there is no need to represent this
process stochastically. It is also conceivable that, at least in sufficiently homogeneous terrain
well away from orography, a typical boundary layer “eddy” associated with surface form drag is
also sufficiently small in scale that grid scale stochasticity in grid-scale vertical mixing will be
relatively small. This argues that, instead of having an ad hoc u parameter, aspects of stochastic
parametrisation should be developed at the process level.

The case for stochastic parametrisation at the process level is fairly clear when discussing
processes like convection (eg Lin and Neelin, 2003; Plant and Craig, 2008), and imaginative new
stochastic schemes for par