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1 Lecture 8 — Lattice modes and their symmetry

1.1 Molecular vibrations — mode decomposition

• We have seen in previous sections that dynamical effects can destroy the
translational symmetry in a crystal, giving rise to scattering outside the
RL nodes. In addition, other symmetries will be broken by individual
excitations. Here, we want to illustrate how symmetry breaking can
be classified with the help of symmetry.

• Normal modes of vibration can be fully classified based on the symmetry
of the potential. This is an entirely classical derivation.

• In the quantum realm, the eigenstates of a Hamiltonian with a given sym-
metry will not possess the full symmetry of the Hamiltonian, but can also
be classified on the basis of symmetry. This is one of the most power-
ful applications of symmetry to quantum mechanics: one can deduce
the whole multiplet structure of a Hamiltonian from symmetry consider-
ations alone.

• Since the presence of a lattice gives rise to additional complications, we
will first illustrate the principle using isolated molecules. We will show
that molecular vibrations can break the symmetry of the molecule in a
systematic way.

• Isolated molecules possess a point-group symmetry, which is not restricted
to be one of the 32 crystallographic point groups.

• In the remainder, we will call modes the static patterns of distortion of a
molecule, which can be thought of as snapshots of the molecule as it
vibrates (strictly speaking, displacements in a mode can have complex
coefficients — see below). Normal modes will have the usual meaning
of special patterns of distortions associated with a single vibrational
frequency ω. An example of a mode is given in fig. 1 for a hypothetical
square molecule.

• The mode in fig. 1 has no symmetry whatsoever. However, one can con-
struct modes that retain some of the original symmetry. Modes in fig.
2, for example, are not completely arbitrary: they transform in a well-
defined way by application of the symmetry transformations of the origi-
nal molecule (which has point-group symmetry 4mm in 2D). Specifically,
they are either symmetric or antisymmetric upon application of any of
the 8 symmetry operators of 4mm (see Lecture 1):

3



Figure 1: A snapshot of a vibrating square molecule.

� Mode Γ1 is symmetric under all the symmetry operators of the group
— we say that it transforms under the totally symmetric mode.

� Mode Γ2 is symmetric under 1, 2, m10 and m01 and antisymmetric
under 4+, 4−, m11 and m11̄.

� Mode Γ3 is symmetric under 1, 2, m11 and m11̄ and antisymmetric
under 4+, 4−, m10 and m01.

� Mode Γ4 is symmetric under 1, 2, 4+ and 4− and antisymmetric under
m10, m01, m11 and m11̄.

• Once can also say that each “symmetric” operator is equivalent to mul-
tiplying all the displacements of a given mode by +1, whereas each
“antisymmetric” operator by −1. This is the simplest example of a irre-
ducible representation of a group — a central concept in group the-
ory: the action of a symmetry operator on a mode has been “reduced”
to multiplying that mode by a number. In a concise way, we could write,
for example:

4+ [Γ2] = −1 [Γ2]

2 [Γ3] = +1 [Γ3]

m11 [Γ4] = −1 [Γ4] (1)

• Not all modes can be fully “reduced” in this way. An example is given in fig.
3 . We can see that:
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Figure 2: The four “1 dimensional modes” of the square molecule. These
modes transform into either themselves (symmetric) or minus themselves
(antisymmetric) upon all symmetries of the molecule.

Figure 3: The four “2 dimensional modes” of the square molecule. These
modes transform into either ± themselves (symmetric/antisymmetric) or into
each other in pairs upon all symmetries of the molecule. Note that all these
modes are antisymmetric upon 2-fold rotation.
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� Certain symmetry operators interchange the modes. For example,
the operator 4+ transforms mode [I] into mode [II] and [III] into
mode IV ], etc.

� One can prove that there is no way of decomposing these modes as
a linear combination of ”fully reduced” modes that transform as the
previous group, i.e., as a multiplication by +1 or −1.

� [I] is never transformed into [III] (or vice versa) and [III] is never
transformed into [IV ] (or vice versa).

• Here, it is clearly impossible to transform these modes by multiplying each
of them by a number. However, the symmetry operations on these
modes can still be summarised in an extremely concise mathematical
form. In order to achieve this, we can consider these modes as ba-
sis vectors of an abstract mode space. Linear combinations of these
modes simply mean vector addition of the displacements of each atom.

• Crucially, the symmetry transformations preserve the linearity of mode
space, so that, if g is an operator, m1 and m2 are modes and a and
b are constants. This is a key requirement of a representation of the
group.

g[am1 + bm2] = agm1 + bgm2 (2)

• Let us consider in particular the set of displacements that are linear com-
binations of modes [I] and [II] — in other words, all the displacements
of the type

a[I] + b[II]→
(
a
b

)
(3)

where the array notation in eq. 3 should be obvious. An alternative
phrasing is that we are considering the subspace spanned by modes
[I] and [II].

• The transformations can now be expressed in matrix form, as illustrated
in tab. 1. Modes [III]-[IV ] transform in the same way.

• As a second example, we analyse the displacements of the central atom
of our hypothetical molecule, located on the fourfold axis. This atom
has two degrees of freedom, as shown in fig 4. The two correspond-
ing modes transform in the same way as modes [I] and [II] (or [III]

and [IV ]). In the language of representation theory, we say that there
transform according to irreducible representation Γ5.
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Table 1: Matrix representation of the transformations of point group 4mm on
the subspace spanned by modes [I] and [II]

1 2 4+ 4−(
1 0
0 1

) (
−1 0

0 −1

) (
0 −1
1 0

) (
0 1
−1 0

)
m10 m01 m11 m11̄(

1 0
0 −1

) (
−1 0

0 1

) (
0 1
1 0

) (
0 −1
−1 0

)

Figure 4: The two central-atom modes of the square molecule. One can verify
that they transform as the ”2-D” corner modes, i.e., with the representation Γ5

• The 10 modes described here above exhaust all the 8 degrees of freedom
of the 4 atoms at the corner of the molecule plus the atom at the centre.
Therefore, any arbitrary displacement pattern can be written as a linear
combination of the 10 modes, which represent a complete basis for
the space of all possible distortions of the molecule.

The theory of irreducible representations teaches how to decompose arbitrary displacement
patters as linear combinations of special basis modes, transforming according to rules similar
to the ones illustrated here above.
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1.2 Molecular vibrations — symmetry of the normal modes

• We will now see how the analysis in the previous section helps us to iden-
tify normal modes without knowing anything about the potential (other
than its symmetry). Let us consider a normal mode Qi. We know that
our basis modes qj form a complete basis for any distortion, so it must
be possible to write:

Qi =
∑
j

aij qj (4)

(in the general case, aij can be complex)

• Let us assume that Qi is non-degenerate, so that it uniquely satisfies
the secular equation with a frequency ωi. We can simply use physi-
cal intuition to conclude that all the modes related by symmetry to
Qi, such as (g [Qi]) must also be eigenvectors with the same fre-
quency. However, we just assumed that Qi is non-degenerate, so it
must necessarily follow that

g [Qi] = cQi (5)

for every operator g in the symmetry group. Here c is a constant (in
fact, a unitary constant). The only modes that transform in this way are
the 4 modes Γ1 – Γ4. One can show that no other linear combination
of the 10 modes will do. We reach therefore the following surprising
conclusion:

The non-degenerate modes of our molecule must transform as one of the four modes
Γ1–Γ4. Since there are no other modes with these transormation properties, Γ1–Γ4 must
be normal modes!

• We reached this conclusion absolutely for free, without any knowledge of
the potential. Moreover, once we know the pattern of distortions and the
spring constants, it is very easy to find out the frequency of vibration of
each of the modes. This is explained in some detail in the extended ver-
sion of the notes, but basically what ones does is to equate the poten-
tial energy of the molecule at maximum mode amplitude (stretch)
with its kinetic energy at zero stretch (a bit of extra care is required
if the modes have complex coefficients, i.e., complex phase factors the
different atoms). The frequency of mode Γ4 is zero by inspection (it is a
pure rotation of the whole molecule).
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• Normal modes with degeneracy other than 1 are associated with irreducible
mode multiplets, such as modes I-IV and the modes of the central atom.
The symmetry analysis fully determines the mode degeneracy: here,
only doublets are possible, since Γ5 acts on a 2D mode space. The
normal modes with non-zero energy for a spring potential (as shown in
fig 1) are depicted in fig. 5 (more on the extend version of the handouts).

Figure 5: Examples of non-zero-frequency normal modes of Γ5 symmetry
involving two-atom displacements. The exact mixing coefficient depend on
the mass and spring constant parameters.

1.3 Extended lattices: phonons and the Bloch theorem

• We now want to apply similar considerations in the presence of a lattice,
i.e., of translational symmetry. As a simple case, we can think of the
(previously isolated) molecules as being placed at the nodes of a prim-
itive or centred lattice with the same symmetry as the molecule. Since
the point group was 4mm (in 2D), we will obtain the plane (wallpaper)
group p4mm. Likewise, in 3D, the point group is 4/mmm and the pos-
sible space groups P4/mmm and I4/mmm.

• Starting from one of the previous modes, we can construct whole-lattice
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(extended) Bloch modes as follows:

� Start from one of the previous modes applied to the molecule in unit
cell 0, which we shall call [u(0)].

� To all molecules located in unit cells at position lattice positions ri, we
apply the following complex mode

[u(ri)] = [u(0)]eik·ri (6)

� The vector k is known as the propagation vector of the mode, and
can be restricted to the first Brillouin zone. This is clear from the
fact that an arbitrary propagation vector k can be written as

k = τ + k′ (7)

Where τ is a RL vector. However, τ can always be omitted since
ri · τ = 2πn

• We can now show that the translation operator applied to one of the modes
thus constructed is equivalent to multiplying the mode by a constant
— this is completely analogous to one of the modes Γ1 – Γ4 described
above for the isolated molecule. In fact, if one applies the lattice trans-
lation t (with translation vector t) to the mode in eq. 6, one obtains

t [u(ri)] = e−ik·t[u(ri)] (8)

This is shown graphically in fig. 6.

• These modes are fully reduced as far as the translations are concerned.
Using the same reasoning as for the single molecule, one finds that
normal modes of a translationally invariant potential must have
this Bloch form. This is an elegant proof of the Bloch theorem (here,
the classical analogue). Considerable effort is require to obtain fully
reduced modes in the presence of rotations and translations.

• In the particular case we described:

� The three zero-frequency modes of the singe molecule will give rise
to acoustic modes. All the other modes will be optical.

� If no other spring constants are introduced, the energy of the modes
will be unchanged. Springs between the “molecules” in different
unit cells, will give rise to dispersion, i.e., the energy will depend
on k.
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Figure 6: A simple example of a vector Bloch mode to illustrate the transfor-
mation properties of these modes upon translation. The arrows represent the
amplitude of the mode (here a constant vector), while the clocks represent
the phases. Mode (b) and (c) are the same as mode (a) translated by one
or two unit cells to the right. However, they can also by obtained multiplying
mode (a) by exp(ikR) where R is one or two lattice spacings for (b) and (c),
respectively, and k is the propagation or Bloch vector of the mode.

1.3.1 Classical/Quantum analogy

• The examples above have been derived in a purely classical context. How-
ever, there is complete analogy with the quantum mechanical case,
provided that the concept of “symmetry of the potential” is replaced with
“symmetry of the Hamiltonian” and “symmetry of the modes” with “sym-
metry of the wave functions”.

• In complete analogy with the classical case one finds, for example, that
non-degenerate eigenstates must be fully reduced with respect to
the symmetry group of the Hamiltonian (i.e., a symmetry transforma-
tion must be equivalent to a multiplication by a complex scalar constant).

• Likewise, the entire multiplet structure of a given Hamiltonian (how
many multiplets of a given degeneracy) is entirely determined by
symmetry, and is the same for Hamiltonians with the same sym-
metry. The relative position of the multiplets, their energy levels and
the wave functions are potential-dependent.
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1.3.2 Inversion and parity

• Inversion is a special symmetry operation: it always commutes with all
other rotations/reflections and forms a group of two elements with the
identity.

• It is possible to show that in centrosymmetric crystals (i.e., those pos-
sessing the inversion as a symmetry element) all solutions of the
Schroedinger and normal-mode equations have a definite parity
— in other words, transform either into themselves (even-parity or “ger-
ade” solutions) or into minus themselves (odd-parity or “ungerade” so-
lutions) by inversion. As we shall see, this is important in determining
the Infrared and Raman selection rules.

1.4 Experimental techniques using light as a probe: “Infra-Red”
and “Raman”

• Optical techniques are extremely useful to determine vibration frequencies
in molecules, as well as phonon frequencies in solids. Here, we will
briefly introduce two techniques — Infrared (IR) absorption/reflection
and Raman scattering.

• IR spectroscopy is performed by measuring the absorption or reflection of
infra-red radiation (the latter exploiting the fact that reflectivity contains
information about absorption). In the more “direct” absorption process,
a photon is completely absorbed and a phonon is created instead (fig.
7 a).

• Raman scattering is a “photon-in-photon-out” technique, where one mea-
sures the wavelength change of visible light as a phonon is created or
annihilated (fig. 7 b). Typical values of the incident energy and wave-
vector are:

IR ~ω ∼ 10− 100 meV

1

λ
∼ 103 cm−1

Raman ~ω ∼ 1− 10 eV

1

λ
∼ 105 cm−1 (9)
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Figure 7: Diagrammatic representation of the IR and Raman scattering pro-
cesses in a crystalline material, illustrating the energy and momentum con-
servation. For a molecule, the recoil of the molecule itself ensures conserva-
tion of momentum.

1.4.1 IR absorption and reflection

• The following results can be obtained by analysing the Classical Dipole
Oscillator Model (see also Optical Properties part of C3 course):

� The reflectivity R of a material contains information about both refrac-
tive index n and absorption coefficient α.

� Near a resonance, both R and n become anomalous, and show a
peak at the resonant energy.

� The width of the peak is related to the width (sharpness) of the reso-
nance (the “γ” damping coefficient, which you might have encoun-
tered already).

• An example of an absorption spectrum for a the Vanillin molecule is shown
in fig 8.

• Typical vibration frequencies in molecules and optical phonon frequencies
in solids (see here below) are of the order of several THz (1000 cm−1 =
30 THz), which falls in the IR region of the electromagnetic spectrum.

• It is the displacement of oscillating dipoles that causes the polarisation.
In other words, in order for a resonance to cause a IR anomaly, the
vibration of phonon modes must generate oscillating electrical dipoles.
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Figure 8: The IR transmission (1/absorption) spectrum of the vanillin
molecule. Note the sharp peaks where the IR light is strongly absorbed by
the molecular vibration modes.

• The momentum of the electromagnetic radiation, hν/c, is much smaller
than that of typical phonons, except for phonons very near the zone
centre. On the other hand, the frequency of near-zone-centre acoustic
phonons is much too low to be accessed with this method. Therefore, in
extended solids, IR spectroscopy essentially probes zone-centre optical
phonons.

• IR absorption at low temperatures can be calculated using the Fermi Golden
Rule, where the initial state ψi has zero phonons, while the final state
ψf has one phonon.

Ti→f = 2π/~ |〈ψf |H ′|ψi〉|2ρ = Ti→f = 2π/~ |E · 〈ψf |u|ψi〉|2ρ (10)

since the perturbing Hamiltonian is H ′ = −E · u where u is the dipole
operator u =

∑
n qnrn, the summation running over all the atoms in the

crystal.

• Since a dipole moment is parity-odd (i.e., it change sign upon inversion)
only parity-odd modes (i.e., modes that are antisymmetric by inversion)
can be “IR active”. This is true both for centrosymmetric molecules and
for centrosymmetric crystals, since in both cases phonons can also be
classified as parity-even and parity-odd.

• For non-centrosymmetric molecules and non-centrosymmetric crystals, phonons
cannot also be classified as parity-even and parity-odd, and the matrix
element in eq. 10 is in general non-zero (i.e., all modes are IR active).
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1.5 Raman scattering

• In extended solids, inelastic light scattering techniques can be used to
measure both acoustic and optical phonons. Inelastic light scattering
via acoustic phonons is known as Brillouin scattering — a technique
that is perhaps more often applied to liquids. Inelastic light scattering via
molecular vibrations or optical phonons is known as Raman scattering
In both cases, the previous consideration apply and the phonon probed
optically are those very near the zone centre.

• The mechanism giving rise to Raman scattering involves a change in the
polarisability of the molecule or crystal as it vibrates, which generates
alternative selection rules to the IR process. This can be seen classi-
cally as follows: the polarisation vector inside the material at a given
position r and time t can be written as:

P(t, r) = αEei(k0r−ω0t) + c.c.

α = α0 +
∑
i

αiQi e
i(kir−ωit) + . . .+ c.c. (11)

• In eq. 11 k0 and ω0 are the wavevector and frequency of the electric field
and ki and ωi are the values for normal mode i having amplitude Qi.
The quantities α0 and αi are components of the polarisability tensor,
since, in general, P is not parallel to E. Importantly, all the α’s are
properties of the crystal, and must have the full symmetry of the
crystal.

By combining the two expression in eq. 11 we obtain

P(t, r) = α0Ee
i(k0r−ω0t) +

∑
i

αiQiE e
i[(k0±ki)r−(ω0±ωi)t)] + . . .+ c.c.

(12)

• From eq. 12 that the polarisation vibrates with three distinct frequencies:
that of the original photon and those shifted upwards or downwards by
the phonon frequency.

• Once again, we remind that the α’s must have the full symmetry of the
molecule or crystal. In the case of a centrosymmetric molecule or
crystal , they must be parity-even for a centrosymmetric system.
Both P and E are parity-odd, so the phonon or vibration must be
parity-even (inversion-symmetric).
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1.6 Inelastic neutron scattering

• Inelastic neutron scattering (INS) is another powerful technique to measure
molecular and lattice vibrations. In this case, the probe is a thermal
neutron, and one measures the change in energy and momentum of
the scattered neutron. This process is illustrated in diagrammatic form
in fig. 9 for a crystal. For a molecule, as in the case or IR and Raman
scattering, conservation of momentum is ensured by the recoil motion
of the molecule itself.

Figure 9: Diagrammatic representation of the inelastic neutron scattering pro-
cess (INS) in a crystalline material, illustrating the energy and momentum
conservation. For a molecule, the recoil of the molecule itself ensures con-
servation of momentum.

• Typical neutron parameters employed for INS are

INS ~ω ∼ 10− 400 meV

1

λ
∼ 107 − 109 cm−1

(13)

• As we can see by comparing with eq. 9, the neutron and IR energies
are comparable, but the neutron wavenumber (momentum) is much
larger, enabling one to access several Brillouin zones. The main ad-
vantages of INS over IR and Raman are in fact

� The range and momentum is much extended.

� There are no selection rules, so all phonon modes can be accessed
at the same time.
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• The most popular neutron instrument used to measure phonons in crys-
tal is known as a triple-axis spectrometer (fig. 10). By varying the
monochromator, sample, analysed and detector angle one can explore
a vast say of the energy-momentum space.

Figure 10: Schematic drawing of a “triple-axis” spectrometer.
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2 Lecture 9 — Anharmonic effects in crystals

• Several important phenomena in crystals cannot be explained by assuming
that atomic vibrations are harmonic. In particular, thermal expansion
is zero, and the temperature dependence of the phonon thermal
conductivity is completely incorrect in the harmonic approximation.

• The result on thermal expansion can be obtained by purely classical ther-
modynamic considerations. We will demonstrate this first to illustrate
the general importance of anharmonicty.

• Explaining phonon thermal conductivity requires to introduce the princi-
ple of conservation of crystal momentum.

2.1 Thermal expansion

• The equilibrium state for a solid (e.g., at ambient pressure) is reached when
the external pressure exactly balances the volume derivative of the free
energy at a given temperature:

P = −
(
∂F

∂V

)
T

(14)

where F is the Helmholtz free energy given by

F = U − TS (15)

• The Helmholtz free energy of an insulator has two contributions:

� The equilibrium energy U0 of the crystal lattice, i.e., the energy of the
“springs” in their equilibrium positions. By definition, P0 = ∂U0

∂V is
temperature independent :

∂P0

∂T
=

∂2U0

∂V ∂T
= 0 (16)

� The energy and entropy term for the phonon system. The volume
derivative of this part of the Helmholtz free energy can be consid-
ered to be the pressure of the phonon gas Pph.

• The calculation of Pph in the general case (including anharmonicity) is not
difficult but is rather lengthy, and is reported in the extra material. Here,
we will assume the result as given:
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Pph = − ∂

∂V

1

2

∑
k,s

~ωs(k)

+
∑
k,s

(
−~∂ωs(k)

∂V

)
1

eβ~ωs(k) − 1
(17)

• We can proceed with the derivation of the linear thermal expansion co-
efficient — by definition:

α =
1

3V

(
∂V

∂T

)
P

= − 1

3V

(∂P/∂T )V
(∂P/∂V )T

(18)

where the right side of eq. 18 is obtained by recognising that T , P and
V are linked by the equation of state,

f(T, P, V ) = 0 (19)

taking the total derivatives with respect to each variable and solving the
resulting determinant equation.

Using the definition of the bulk modulus (inverse compressibility):

B = −V (∂P/∂V )T (20)

eq. 18 becomes:

α =
1

3B

(
∂P

∂T

)
V

=
1

3B

(
∂Pph
∂T

)
V

(21)

where we have used eq. 16.

• The first term is the volume derivative of the zero-point energy; it is tem-
perature independent and can be ignored for the calculation of the
thermal expansion coefficient.

• The second term depends on temperature through the phonon population
ns(k) = (exp(β~ωs(k)) − 1)−1, but is non-zero only if at least some
the phonon frequencies depend on volume.

• In analogy with case of the single oscillator, we can conclude that:

If the lattice potential is harmonic, the phonon frequencies are volume-independent, and
the thermal expansion coefficient is zero at all temperatures.
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• it is therefore necessary to go beyond the harmonic approximation to ex-
plain why materials expand (or contract) when heated. We can write

α =
1

3B

∑
k,s

(
−∂~ωs(k)

∂V

)
∂

∂T
ns(k) (22)

• Remembering the expression for the specific heat:

cV =
∑
k,s

~ωs(k)

V

∂

∂T
ns(k) (23)

• it is natural to define the contribution to individual phonon modes to the
specific heat:

cvs(k) =
~ωs(k)

V

∂

∂T
ns(k) (24)

the so-called partial Grüneisen parameter — related to the anhar-
monicity of individual phonons:

γks = − V

ωs(k)

∂ωs(k)

∂V
= −∂(lnωs(k))

∂(lnV )
(25)

and the overall Grüneisen parameter

γ =

∑
k,s cvs(k)γks∑
k,s cvs(k)

(26)

With these definitions, the thermal expansion coefficient is written as

α =
γcv
3B

(27)

Note that γ is dimensionless, and for typical materials is positive
(springs become stiffer as the volume is reduced) and is usually of the
order of unity, although it can be much larger and sometimes negative
in special cases.
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2.1.1 Thermal expansion in metals

• The previous derivation of the thermal expansion coefficient only strictly
applied to insulators, since it only took into account the pressure of the
phonon gas. It is natural to extend this to metals by including the pres-
sure of the electron gas. It is an elementary result of the Sommerfeld
theory of metals that:

Pel =
2

3

Uel
V(

∂Pel
∂T

)
V

=
2

3
celv (28)

• The complete expression of the linear thermal expansion coefficient is there-
fore

α =
1

3B

(
γcphv +

2

3
celv

)
(29)

• In assessing the relative importance of the two terms, it is important to
remember that typically γ ≈ 1 and that, in the Debye model:

celv

cphv
=

5

24π2
Z

Θ3
D

T 2TF
(30)

where Z is the nominal valence of the metal.

• When evaluated numerically, eq. 30 leads to the conclusion that the pres-
sure of the electron gas contributes significantly to the thermal expan-
sion only below ∼ 10K. The main difference in the thermal expansion
of insulators and metals is therefore in the low-temperature behaviour:
∝ T 3 for insulators, ∝ T for metals.

2.2 Conservation of crystal momentum

• In order to describe thermal conductivity, we need to employ the concept
of crystal momentum. This is also necessary to understand scattering
experiments. You will have seen this already in previous courses, but a
reminder is included here, using a symmetry-based approach (see also
extended version of the notes).
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• The following are results that can be obtained from the applications of ele-
mentary quantum mechanics:

� In quantum mechanics, a symmetry operator is a unitary operator
in Hilbert space (Ô†Ô = 1).

� If the Hamiltonian has a certain symmetry group, then it commutes
with all the corresponding symmetry operators, and has a common
set of basis vectors with them.

� For all unitary operators Ô, there exist a Hermitian operator Â (Â† =

Â) so that Ô = eiÂ.

� If Ô is an infinitesimal symmetry, then the corresponding Hermi-
tian operator Â commutes with the Hamiltonian (it represent a
conserved quantity). This is a statement of Noether Theorem.

• When applied to infinitesimal translations, Noether Theorem famously re-
sults in the conservation of real momentum. Once considering the
system as composed by the crystal, its excitations and any external
particles (in a scattering process), real momentum is always conserved.

• When considering the crystal as a fixed potential, translational symme-
try is only discrete (by units of lattice translations). Therefore, Noether
Theorem does not apply and real momentum is not conserved. This
is clear, since excitations and external particles can exchange real mo-
mentum with the crystal, and their real momentum is not conserved
overall.

• However, operators of the form

T̂R = ei
1
~ K̂·R (31)

where R is a lattice translation still commute with the Hamiltonian.
Moreover, this is true of all lattice translations. We will call K̂ the crystal
momentum operator.

• The consequence of this is that

~Ki = ~Kf + ~τ (32)

where ~Ki and ~Kf are the initial and final values of the crystal mo-
mentum. In other words, crystal momentum is conserved to within
~ times a reciprocal lattice vector.
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• The crystal momentum of Bloch eigenfunctions of the form [u(r)]eik·r is ~k,
so that

K̂u(r)eik·r = ~ku(r)eik·r (33)

• The crystal momentum of and ensemble of Bloch states (even of different
types, e.g., phonons and electrons) that are not interacting is ~

∑
i ki

• The crystal momentum of a particle far away from the crystal (e.g., before
or after the scattering process) is the same as its real momentum.

• Energy is always conserved exactly (the energy transferred to the crystal
as a whole is always negligible).

Normal processes conserve real momentum exactly. In an umklapp process, the ad-
ditive term ~τ corresponds to real momentum transferred to the center of mass of the
crystal.

2.3 Heat transport theory

• All transport phenomena (mass transport, charge transport, spin transport,
heat transport) are non-equilibrium, steady state phenomena, and
they are characterised by a quantity that is being transported, say
Q, and a transport speed v.

• One defines a current as j = (Q/V )v were V is the volume. For ex-
ample, for charge transport the transported quantity is electric charge,
so Q/V = −ene and the transport speed is the drift velocity vd =

−eEτ/m∗, so that je = e2neτ/m
∗E.

• The conductivity (in this case, the electrical conductivity) is the ratio of the
current and the “driving parameter” (E in this case).

• For thermal transport, the transported quantity is heat (or entropy) and the
velocity is that of the particles that transport the entropy.

• Whereas an electron retains its charge after a collision, a particle releases
its entropy when it reaches thermal equilibrium through collisions
(not all collisions are capable of this).

• Let us look at the scheme shown in fig. 11 (typical phonon mean free paths
at RT are a few tens of nm). The entropy per unit volume at each point
is given by:
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Figure 11: Schematic representation of thermal transport.

s =

∫ T

0
dT

cv
T

(34)

The entropy balance at the mid position T2 is given by the entropy flow-
ing in the domain and released therein minus that flowing out :

∆sin =
1

2
(s1 + s3)

∆sout = s2

∆stot =
1

2

cv
T

(T1 − T3) =
cv
T

lx∇T (35)

where lx is the mean free path projected along the direction of the gra-
dient. The transported quantity is the heat transfer per unit volume

Q

V
= cvlx∇T (36)

while the relevant velocity is the projection cx of the phonon (sound) ve-
locity c along the x direction. In order to obtain the thermal conductivity,
we need to average the expression cxlx = cl cos2 θ over the hemisphere
in the direction of the gradient (θ is the angle between the phonon ve-
locity and the x axis). It is a simple calculation to show that this average
is l c/3.

• We have made the approximation that the average velocities do not de-
pend on temperature, which is about (but not exactly) correct for both
phonons and electrons (but, of course, would be very wrong for bosons
with a mass). Our discussion is summarised in tab. 2
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Table 2: Various parameters relevant to thermal and electrical transport.

Transport Transported quantity Velocity Current Conductivity

Electrical −ene −eEτ/m∗ e2neτ/m
∗E σ = e2neτ/m

∗

Phonon Thermal cphv l∇T c/3 1
3c
ph
v l c∇T κph = 1

3c
ph
v l c

Electron Thermal celv l∇T vF /3
1
3c
el
v l vF∇T κel = 1

3c
el
v l vF

• The mean free path l and the relaxation time τ in eq 2 have in general a
complex temperature dependence, making exact theory of transport a
very difficult problem. However, we can write:

l = (nsΣ)−1 (37)

where ns is the density of scatterers and Σ is the scattering cross sec-
tion; this simply shifts the problem to determining the temperature (or
energy) dependence of the cross section.

• Note that, in the free electron model

celv = nekB
π2

2

(
kBT

EF

)
= nekBπ

2

(
kBT

m∗v2
F

)
(38)

and l = vF τ , so the electronic thermal conductivity becomes:

κel =
neτ

m∗
π2

3
k2
BT (39)

whence the famous Wiedemann-Franz law:

κel =
π2

3

(
kB
e

)2

Tσ (40)

2.4 Thermal conductivity due to phonons

• In a perfect crystal, harmonic phonons would propagate without hinder-
ance as free particles; furthermore, in an insulator, we have removed
the possibility for them to scatter off electrons. We would therefore con-
clude that phonons can only be scattered by crystal imperfections,
i.e., defects and, ultimately, the surfaces of the crystal themselves.
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• In both cases, real momentum is transferred between the phonons and
the crystal as a whole. These collisions are therefore efficient in ther-
malising the phonon energy distribution and therefore in transferring
entropy.

• Taking Σ as a constant in eq. 37, we can as a first approximation write
l ∝ 1/nd, nd being the defect density. If nd is very small, l is eventu-
ally limited by the crystal size. In either case, the harmonic approx-
imation predicts that the phonon thermal conductivity should be
proportional to the phonon specific heat, that is, ∝ T 3 at least up
to temperatures where the optical phonons become important. In most
materials, the relation κph ∝ T 3 should therefore hold in a wide domain
up to a significant fraction of the Debye temperature.

• The relation κph ∝ T 3 is indeed obeyed at very low temperatures (typically
to∼ 10K), but the lattice thermal conductivity drops rather abruptly
above this temperature. This is exemplified in fig. 12.

• The crystals employed in the Thacher experiment (fig. 12) where very pure,
so that the scattering from defects was negligible. Therefore, at low
temperatures, we can clearly see the effect of crystal size, which deter-
mines the mean free path l . In assessing the data, we have to acknowl-
edge that, above ∼ 10K something starts scattering the phonons more
than the crystal boundaries, and this can be nothing other than other
phonons.

• In the harmonic approximation, phonons have infinite lifetime and do not
scatter off each other. Phonon-phonon scattering is an intrinsically in-
elastic process. 3- and 4- phonon processes are depicted in fig. 13.

• The assumption lph ∝ (Σphn
ph)−1, would seem logical, but would give

a completely wrong temperature dependence. In fact, in the Debye
model, the low-temperature phonon density scales like T 3 (like the spe-
cific heat), so we would get cphv l ph = const. We should therefore
expect the thermal conductivity to saturate at the point where the
phonon mean free path becomes smaller than the crystal size.

• One way to reproduce the data is to introduce a low-energy cutoff for
the phonons that contribute to reducing the mean free path. Phonons
below this energy cut-off will be ineffective. This amounts to introduce a
“density of effective phonons” (effective in reducing the mean free path).
The total and “effective” phonon densities in the Debye model are:
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Figure 12: Thermal conductivity of isotopically pure LiF. The different curves
at low temperatures correspond to different crystal sizes: (A) 7.25 mm, (B)
4.00 mm (C) 2.14 mm and (D) 1.06 mm. The figure is the same as in Ashcroft
and Mermin, an is reproduced from P.D. Thacher, Phys. Rev. 156, 957 (1967).

nph = 3n

(
T

ΘD

)3 ∫ ΘD/T

0
dx

x2

ex − 1

npheff = 3n

(
T

ΘD

)3 ∫ ΘD/T

ΘC/T
dx

x2

ex − 1

(41)

where ΘC is the cut-off temperature, and, as we shall see, is a signifi-
cant fraction of room temperature.

• At low temperatures, x � 1 and we can ignore the additive term −1 in the
denominator and the terms with e−ΘD/T as a pre-factor in the integral;
we obtain
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Figure 13: Multi-phonon processes enabled by cubic — (a) and (b)— and
quartic —(c), (d) and (f) — terms in the Hamiltonian.

npheff ≈ 3n

(
T

ΘD

)3

e−ΘC/T
(
(ΘC/T )2 + 2(ΘC/T ) + 2

)
≈ 3n

(
Θ2
C

Θ3
D

)
Te−ΘC/T

(42)

In other words

With the introduction of a cut-off frequency, the number of “effective”
phonons grows exponentially with temperature in the relevant low-
temperature range.

• These results and the last general statement in particular, can be under-
stood by the fact that

Only unklapp processes can bring about the release of entropy and the
attainment of thermal equilibrium.

This can be simply understood by looking again at the diagram in fig.
11. Phonons that transfer entropy from T1 to T2 will carry a net crystal
momentum, whereas phonons in thermal equilibrium will have

∑
i ki =

0

Since normal processes conserve real momentum exactly, they can
never restore a thermal equilibrium configuration of crystal momenta.

• The low-energy cut-off arises naturally from the fact that only unklapp pro-
cesses can reduce the mean free path. In fact, simple kinematics ac-
counting for the simultaneous energy and crystal momentum conserva-
tion (the latter to within a non-zero RL vector) imposes that
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The crystal momentum of all the phonons involved in an umklapp process must be a
significant fraction of a non-zero reciprocal lattice vector. This means also that their
energy must be a significant fraction of the Debye energy.

3 Lecture 10 — Phase Transitions

3.1 Continuous and discontinuous phase transitions

• All phase transitions entail a change in the entropy of a system. We distin-
guish between:

� First-order (discontinuous) transitions: the phase transition is ac-
companied by release of heat (latent heat), and all the other ther-
modynamic quantities (internal energy, entropy, enthalpy, volume
etc.) are discontinuous as well.

� Second-order (continuous) transitions: The thermodynamic quan-
tities are continuous, but their first derivatives are discontinu-
ous. In particular, the specific heat has a pronounced anomaly
(see below) and the thermal expansion coefficient has a step at
the transition.

• Phase transition lines can be crossed as a function of many parameters,
for example temperature, pressure, chemical composition, magnetic or
electric field etc.

• In some cases, phase transitions occur without a change in symmetry of
the material — for example the vapour–liquid transitions. In other cases,
there is a change of symmetry — for example, the liquid–crystalline
solid transitions. Second-order transitions with symmetry changes are
particularly important.

• The low-temperature phase usually has the lowest symmetry. The sym-
metry group of the low-temperature phase is usually a subgroup of that
of the high-temperature phase.

3.2 Phase transitions as a result of symmetry breaking

• There is a close connection between the theory of normal modes and that
of phase transitions resulting from symmetry breaking (first- or second-
order). For a large class of crystallographic phase transitions, one em-
ploys the same decomposition in fully-reduced modes as for the con-
struction of normal modes. For these phase transition:
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� At the transition temperature Tc, a single fully-reduced normal mode
becomes frozen in a given macroscopic part of the crystal (domain)—
neither its symmetry-equivalent not any symmetry-inequivalent modes
freeze in that domain. The symmetry within that domain will be
therefore lowered by that frozen mode.

� Overall symmetry is restored because symmetry-equivalent modes
freeze in different domains.

� A phase transition of this kind is described by the amplitude parame-
ter of the relevant mode, which then describe the degree of “depar-
ture” from the high symmetry. This parameter is therefore called
order parameter.

� Disorder = high symmetry. Order=low symmetry.

• These phase transitions are called displacive, because they are described
in terms of atomic displacements. Other phase transitions in crys-
tals (particularly alloys), called order-disorder, are characterised by
the degree of chemical ordering on each site, i.e., the positive or
negative deviation from a random occupancy of each site by a cer-
tain atomic species. These phase transitions can also be described by
scalar modes. Magnetic phase transitions are also usually described
using vectors — in this case axial vectors .

3.3 Macroscopic quantities: the Neumann principle

• Changes in point group symmetry (i.e., loss of rotation/mirror symmetries)
are extremely important, since they allow new macroscopic physical
phenomena.

• This is expressed in the famous Neumann Principle (from Franz Ernst Neu-
mann 1798-1895): “The symmetry elements of any [macroscopic]
physical property of a crystal must include the symmetry elements
of the point group of the crystal”.

• For example, the point group 4/mmm is non-polar (see here below), whereas
the point group 4 is polar. Therefore, a phase transition between space
groups I4/amd (crystal class = point group = 4/mmm) and I4 (crystal
class 4) can (and in general will) result in the development of a macro-
scopic electrical polarisation (ferroelectricity).

• When a phase transition results in the development of a new macroscopic
property that couples to an external field, it is said to be a ferroic tran-
sition.
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3.3.1 Polarisation and ferroelectricity

• Macroscopic polarisation describes the overall electrical dipole moment
of a crystal, resulting form the sum of microscopic electrical dipole
moments. It is measured in C/m2. Ferroelectrics insulators can be
“switched” by the application of an external electric field, resulting in
a current pulse between the two surfaces of the crystal.

• Since the polarisation P is a polar (conventional) vector, there must not
be any symmetry operator in the point groups of a ferroelectric crystal
that changes the direction of P . At the very least, the point group of
the crystal must not contain the inversion. It turns out that there are
only 10 crystal classes that allow a macroscopic polarisation: 1, 2,m,

mm2, 4, 4mm, 3, 3m, 6, 6mm. A phase transition to one of these crystal
classes will result in the development of ferroelectricity.

3.3.2 Magnetisation and ferromagnetism

• The magnetisation M is an axial (or pseudo-) vector, which explains why
ferromagnetic materials are not (usually) ferroelectric at the same time
and why centrosymmetric ferromagnets can exist (pseudo-vectors are
parity-even).

• Ferromagnets cannot be truly cubic, since the direction of M in itself breaks
the cubic symmetry. For example, iron is ferromagnetic with M in the
< 111 > direction, and in the magnetic state one can measure a very
slight rhombohedral distortion away from cubic — an effect known as
magnetostriction.

• Many more crystals are antiferomagnetic without breaking crystal symme-
tries than what one may expect from simple symmetry considerations.
This is because magnetic moments are time-reversal-odd (M can be
thought as resulting of microscopic circulating currents), whereas the
crystal structure is time-reversal-even. By including the reversal sym-
metries combined with ordinary operators, one can describe complex
magnetic structures in highly-symmetric crystals.

3.4 The Landau theory of phase transitions

• One of the most significant contributions of Lev Davidovich Landau (1908-
1968) — one of the great physicists of the 20th century — has been
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the theory of phase transitions bearing his name. Landau theory is of
central importance in many fields of condensed matter physics, includ-
ing structural phase transitions, magnetism and superconductivity (the
latter through a modification of the original theory known as Ginsgburg-
Landau theory — see a later part of the C3 course).

• The essential feature of Landau theory is that it is a phenomenological
theory. This means that, unlike a microscopic theory, it is not con-
cerned with the details of the interactions at the atomic level that ulti-
mately should govern the behaviour of any system.

• The central idea of Landau theory is the construction of a quantity, known
as Landau free energy or F , which describes the energetics of the sys-
tem in the vicinity of a phase transition. F , which can be usually thought
of as an approximation to the Helmholtz or Gibbs free energy per unit
volume, depends on temperature, pressure and any other relevant ex-
ternal parameter (e.g., electric or magnetic field, stress, etc.). Crucially,
the Landau free energy also depends on the order parameters of
all the relevant modes of the system.

For a given set of external parameters, the stable state of the system is
the one for which the Landau free energy is minimal as a function of all
internal degrees of freedom.

• In the Landau construction, one assumes the existence of a high-symmetry
phase somewhere in the phase diagram, most likely at high tempera-
tures. In this state, all the order parameters are zero. One can therefore
naturally decompose F as:

F = F0 + ∆F(ηi) (43)

where F0 does not depend on the order parameter, while ∆F(ηi) is
small in the vicinity of the phase transition.

• The following statement is the point of departure for the Landau analysis:

For any value of the order parameters, ∆F is invariant by any element g
of the high-symmetry group G0.

• Since ∆F is small one can perform a Taylor expansion of ∆F(ηi) in pow-
ers of ηi. For each ηi, the expansion will look like:

∆F = −ηH +
a

2
η2 +

c

3
η3 +

b

4
η4 + o(η5) (44)
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• H is an external field. The term in H is only present for ferroic transitions.

• Note the absence of a linear term in η that does not contain H. This is
because η must break at least some symmetry of the high-symmetry
phase.

• If we look, for example, at the modes described in the top row of fig. 5, we
find that:

� The dipole moment of the molecule is η′d, where d is along x and y
for the left and right mode, respectively. .

� The linear terms for coupling with the electric field are −η′dxEx and
−η′dyEy.

� We can now redefine the order parameter η = dη′ and get the form in
eq. 44 .

• With this, we can define the generalised polarisation:

P = −∂F
∂H

= η (45)

• Note that some of the symmetry operators of the undistorted molecule
transform the two modes into each other. This can be fully accounted
for in a slightly more complex formulation.

• Note that some of the symmetry operators of the undistorted molecule
transform the two modes into each other. This can be fully accounted
for in a slightly more complex formulation of the Landau free energy.

• In order for the high-temperature phase to be stable, one must have a > 0

for T > Tc. Likewise, the phase transition can only occur if a < 0 for
T < Tc.

In the Landau theory, phase transitions occur when the coefficient of the quadratic term
in the order parameter expansion changes sign (from positive to negative, e.g., as a
function of temperature). If the driving parameter is temperature, the sign-changing
term is usually written a′(T − Tc)η2, where Tc is the transition (or critical) temperature.
Only one fully reduced mode or several modes having the same transformation rules
can drive the phase transition, so only one of the ηi is involved in a phase transition.

• in many cases, cubic terms in η3 are not allowed by symmetry. For exam-
ple, in an expansion as in eq. 44, the cubic term (or any other odd-order
term) would not be allowed if a transformation η → −η existed in the
high-symmetry group.
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• If the cubic term exists it always force the transition to be first-order.
See for this the analysis of the following paragraphs and in particular
fig. 14

One of the conditions for a phase transition to be continuous is that the cubic term in the Taylor
expansion is not allowed by symmetry — this is called the Landau condition for continuity.

• In the absence of higher-order terms, the quartic term is essential in pro-
ducing a well-conditioned free energy, the requirement being that →
+∞ as |η| → ∞. In the simple, one-dimensional case, this is satisfied
if b > 0. If higher-order terms are present (for instance, the 6th order
term is always allowed by symmetry), the quartic term can be negative.
One can see that, for appropriate values of the parameters, a Landau
free energy with a negative quartic term can produce a first-order
phase transition.

3.5 Analysis of a simple Landau free energy

• In this section, we will analyse the simple, “classic” form of the Landau free
energy, i.e., eq. 44 without the odd-order terms. This form of Landau
free energy describes a continuous phase transition. Our purpose is
to extract a few relevant thermodynamic parameters both above and
below the phase transition.

∆F = −ηH +
a

2
η2 +

b

4
η4 + o(η4) (46)

3.5.1 The order parameter (generalised polarisation)

• As we have seen, the order parameter is identical to the generalised po-
larisation in the case of a ferroic transitions. By minimising ∆F with
respect to η we obtain:

−H + a′(T − Tc)η + bη3 = 0 (47)

• In zero field, P(H = 0) = η(H = 0) is known as the spontaneous gener-
alised polarisation. Eq. 47 has the simple solutions:
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η = 0

η = ±
√
a′

b
(Tc − T )

1
2 (48)

where the solutions on the second line are present only below Tc. It
is easy to show that, for T > Tc, η = 0 is a global minimum, while for
T < Tc is a local maximum. The situation is depicted schematically in
fig. 14

Figure 14: Two examples of the temperature dependence of the Landau free
energy. Top: the simple form with quadratic and quartic terms produces a
2nd-order phase transition. Bottom: adding a cubic term produces a 1st-
order phase transition.

The case H 6= 0 is analysed in details in the book by Landau; here it
will suffice to say that, if H 6= 0, η 6= 0 both above and below Tc. In
other words, the external field breaks the symmetry and there is no
longer a “true” phase transition.
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3.5.2 The generalised susceptibility

The generalised susceptibility (magnetic susceptibility for a ferromag-
netic transition, dielectric constant for a ferroelectric transition, etc.) can
also be calculated from the Landau free energy as

χ =
∂P
∂H

=
∂η

∂H
(49)

By differentiating eq. 44 with respect to H, one finds the general for-
mula:

χ−1 =
∂2∆F
∂η2

(50)

which, in the specific case of eq. 46 yields:

χ−1 = a′(T − Tc) + 3η2b (51)

Eq. 51 is can be evaluated for all values of the field, but it is particularly
easy to calculate at H = 0 (low-field susceptibility), where it produces
different temperature dependences above and below Tc:

χ−1(H = 0) = a′(T − Tc) for T > Tc

χ−1(H = 0) = 2a′(Tc − T ) for T < Tc (52)

Note that the zero-field susceptibility diverges at the critical tem-
perature. In fact, above Tc, eq. 52 gives the Curie-Weiss law for the
susceptibility.

The negative-power-law behaviour of the generalised polarisation and
the divergence of the susceptibility near the transition are essentially
universal properties of all continuous phase transitions. However, the
critical exponents (β for the generalised polarisation, γ and γ′ for the
susceptibility above and below Tc), are very often quite different from
the Landau predictions of β = 1/2 and γ = γ′ = 1. The exact critical
exponents can be recovered in the framework of a more complex theory
that takes into account the effect of fluctuations.
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3.5.3 The specific heat

It is easy to see that, within Landau theory, the entropy below the phase
transition is:

∆S = S − S0 = − ∂F
∂T

∣∣∣∣
V

= −a
′2

2b
(Tc − T ) (53)

where S0 is the component of the entropy not related to the phase tran-
sition.

∆S = 0 above Tc.

The specific heat is:

∆cv|T<Tc = −T ∂2F
∂T 2

∣∣∣∣
V

=
a′2

2b
T (54)

Therefore, at Tc, cv has a simple discontinuity given by ∆cv = Tca
′2/2b.

In reality, in most phase transition cv has a divergent behaviour (known
as a “λ” anomaly) — again a clear indication that Landau theory needs
to be supplemented by fluctuation to obtain the correct quantitative be-
haviour of the thermodynamic quantities.

3.6 Displacive transitions and soft modes

• Most displacive phase transitions have a dynamical character, and are
caused by softening and “freezing” of a particular phonon.

• Zone-centre phonons: in this case, the optical zone-centre phonon soft-
ens completely at the phase transition, and then hardens again below it,
as the system finds a new dynamical equilibrium around the distorted
structure. The periodicity of the structure is unchanged through the
phase transition.

• Zone-boundary phonons: When the distortion is driven by a zone-boundary
phonon, the distorted structure will have a larger unit cell (the transla-
tional symmetry is broken). The zone boundary point will then “fold” to
the new zone center, and the soft phonon will harden below the phase
transition to become a new zone center phonon.

• In 1960, W. Cochran (Advan. Phys. 9 387 (1960)) proposed a simple rela-
tion between the soft phonon frequency and the Landau parameters:
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ω2 ∝ χ−1 (55)

Eq. 55, combined with eq. 52, gives the temperature dependence of
the soft phonon frequency.

• PbTiO3: a classic example of a displacive soft-mode transition. See the
extended version for a full analysis of PbTiO3 and the agreement of the
experimental data with the linear Cochran relation.
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