Density fluctuations in the Yukawa one-component plasma: An accurate model for the dynamical structure factor

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 84 (2011)

JP Mithen, J Daligault, BJB Crowley, BJB Crowley, G Gregori

Using numerical simulations, we investigate the equilibrium dynamics of a single-component fluid with Yukawa interaction potential. We show that, for a wide range of densities and temperatures, the dynamics of the system are in striking agreement with a simple model of generalized hydrodynamics. Since the Yukawa potential can describe the ion-ion interactions in a plasma, our results have significant applicability for both analyzing and interpreting the results of x-ray scattering data from high-power lasers and fourth-generation light sources. © 2011 American Physical Society.

In-situ determination of dispersion and resolving power in simultaneous multiple-angle XUV spectroscopy


U Zastrau, V Hilbert, C Brown, T Doeppner, S Dziarzhytski, E Foerster, SH Glenzer, S Goede, G Gregori, M Harmand, D Hochhaus, T Laarmann, HJ Lee, K-H Meiwes-Broer, P Neumayer, A Przystawik, P Radcliffe, M Schulz, S Skruszewicz, F Tavella, J Tiggesbaeumker, S Toleikis, T White

Decay of cystalline order and equilibration during the solid-to-plasma transition induced by 20-fs microfocused 92-eV free-electron-laser pulses.

Phys Rev Lett 106 (2011) 164801-

E Galtier, FB Rosmej, T Dzelzainis, D Riley, FY Khattak, P Heimann, RW Lee, AJ Nelson, SM Vinko, T Whitcher, JS Wark, T Tschentscher, S Toleikis, RR Fäustlin, R Sobierajski, M Jurek, L Juha, J Chalupsky, V Hajkova, M Kozlova, J Krzywinski, B Nagler

We have studied a solid-to-plasma transition by irradiating Al foils with the FLASH free electron laser at intensities up to 10(16)  W/cm(2). Intense XUV self-emission shows spectral features that are consistent with emission from regions of high density, which go beyond single inner-shell photoionization of solids. Characteristic features of intrashell transitions allowed us to identify Auger heating of the electrons in the conduction band occurring immediately after the absorption of the XUV laser energy as the dominant mechanism. A simple model of a multicharge state inverse Auger effect is proposed to explain the target emission when the conduction band at solid density becomes more atomiclike as energy is transferred from the electrons to the ions. This allows one to determine, independent of plasma simulations, the electron temperature and density just after the decay of crystalline order and to characterize the early time evolution.

Time-resolved plasma temperature measurements in a laser-triggered hydrogen-filled capillary discharge waveguide

Plasma Sources Science and Technology 20 (2011)

CJ Woolley, K O apos Keeffe, HK Chung, SM Hooker

Temporally resolved, spatially integrated measurements of the temperature of the plasma channel formed by a hydrogen-filled discharge capillary waveguide are presented. Plasma temperatures of 4-7 eV are measured for peak discharge currents between 80 and 150 A. It is demonstrated that laser-triggering the capillary discharge enables capillary discharges with a peak current as low as 23 A to be driven, reducing the plasma temperature to approximately 3 eV. This plasma temperature meets the requirements of a recently proposed soft x-ray recombination laser. © 2011 IOP Publishing Ltd.

High Harmonic Optical Generator (Polarization Beating 1/2)

(2011) UK Patent Application GB1117355.6

LZ Liu, K O'Keeffe, SM Hooker

Simulation of free-electron lasers seeded with broadband radiation

Physical Review Special Topics - Accelerators and Beams 14 (2011)

SI Bajlekov, WM Fawley, WM Fawley, CB Schroeder, R Bartolini, R Bartolini, SM Hooker

The longitudinal coherence of free-electron laser (FEL) radiation can be enhanced by seeding the FEL with high harmonics of an optical laser pulse. The radiation produced by high-harmonic generation (HHG), however, has a fast-varying temporal profile that can violate the slowly varying envelope approximation and limited frequency window that is employed in conventional free-electron laser simulation codes. Here we investigate the implications of violating this approximation on the accuracy of simulations. On the basis of both analytical considerations and 1D numerical studies, it is concluded that, for most realistic scenarios, conventional FEL codes are capable of accurately simulating the FEL process even when the seed radiation violates the slowly varying envelope approximation. We additionally discuss the significance of filtering the harmonic content of broadband HHG seeds. © 2011 American Physical Society.

Decay of Cystalline Order and Equilibration during the Solid-to-Plasma Transition Induced by 20-fs Microfocused 92-eV Free-Electron-Laser Pulses


E Galtier, FB Rosmej, T Dzelzainis, D Riley, FY Khattak, P Heimann, RW Lee, AJ Nelson, SM Vinko, T Whitcher, JS Wark, T Tschentscher, S Toleikis, RR Faeustlin, R Sobierajski, M Jurek, L Juha, J Chalupsky, V Hajkova, M Kozlova, J Krzywinski, B Nagler

Measuring fast electron distribution functions at intensities up to 10 21 W cm-2

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 653 (2011) 137-139

N Booth, N Booth, RJ Clarke, D Doria, LA Gizzi, G Gregori, P Hakel, P Koester, L Labate, T Levato, B Li, M Makita, RC Mancini, J Pasley, J Pasley, PP Rajeev, D Riley, APL Robinson, E Wagenaars, JN Waugh, NC Woolsey

Here we present results from ultra-intense experiments demonstrating the viability of polarization spectroscopy as a diagnostic of the electron return current and spatial anisotropy and distribution function of the fast electron beam. The measurements extend to ultra-relativistic intensities of 10 21 W cm-2, including laserplasma interaction regimes important for fast ignition studies, for example HiPER, and the development of secondary sources from next generation ultra-short pulse, ultra-intense laser facilities such as Astra-Gemini and ELI. As an in situ diagnostic, spectroscopic measurements are vital to understanding fast electron beams, enabling extrapolation of results to define fast ignition inertial confinement fusion and secondary source facilities. © 2011 Elsevier B.V.

Measuring fast electron distribution functions at intensities up to 1021 W cm-2

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2011)

N Booth, RJ Clarke, D Doria, LA Gizzi, G Gregori, P Hakel, P Koester, L Labate, T Levato, B Li, M Makita, RC Mancini, J Pasley, PP Rajeev, D Riley, APL Robinson, E Wagenaars, JN Waugh, NC Woolsey

Quasi-phase-matched high harmonic generation using trains of uniformly-spaced ultrafast pulses

Optics InfoBase Conference Papers (2011)

K O'Keeffe, T Robinson, SM Hooker

We investigate quasi-phase-matching of high harmonic generation over a range of harmonic orders using trains of up to 8 uniformly-spaced counter-propagating pulses, produced using an array of birefringent crystals. © 2012 OSA.

Simulations of neon irradiated by intense X-ray laser radiation

High Energy Density Physics 7 (2011) 111-116

O Ciricosta, HK Chung, RW Lee, JS Wark

We present simulations of the charge states produced by the interaction of intense X-ray laser radiation with a neon gas. We model the results of a recent experiment (Young et al., Nature 466, 56 (2010)), where mJ pulses of X-rays, with photon energies ranging from 800 to 2000 eV and pulse lengths ranging from 70 to 340 fs were incident on neon atoms at intensities of up to 10 18 W cm -2. Simulations using an adapted version of the SCFLY collisional-radiative code, which included the effect of electron collisions and a simple self-consistent temperature model, result in charge state distributions that are in good agreement with the experimental data. We calculate the electron temperature of the system during the evolution of the plasma, and comment upon the role that collisions may play in determining the charge state distributions as a function of the neon ion number density. © 2011 Elsevier B.V.

Reply to "Comment on 'Free-free opacity in warm-dense aluminum'"

High Energy Density Physics 7 (2011) 40-42

SM Vinko, G Gregori, JS Wark

We reply to the comment by Iglesias [HEDP, XXX] regarding our implementation of a solid-state pseudopotential in a model for the calculation of the free--free opacity in warm-dense aluminum [HEDP 5(2009), 124-131]. Some further details are given describing the method used to determine the adjustable parameter in the pseudopotential and several important limitations are discussed. © 2010 Elsevier B.V.

Extent of validity of the hydrodynamic description of ions in dense plasmas.

Phys Rev E Stat Nonlin Soft Matter Phys 83 (2011) 015401-

JP Mithen, J Daligault, G Gregori

We show that the hydrodynamic description can be applied to modeling the ionic response in dense plasmas for a wide range of length scales that are experimentally accessible. Using numerical simulations for the Yukawa model, we find that the maximum wave number k(max) at which the hydrodynamic description applies is independent of the coupling strength, given by k(max)λ(s)≃0.43, where λ(s) is the ionic screening length. Our results show that the hydrodynamic description can be used for interpreting x-ray scattering data from fourth generation light sources and high power lasers. In addition, our investigation sheds new light on how the domain of validity of the hydrodynamic description depends on both the microscopic properties and the thermodynamic state of fluids in general.

In situ x-ray diffraction measurements of the c/a ratio in the high-pressure epsilon phase of shock-compressed polycrystalline iron

PRB American Physical Society 83 (2011) 144114-

JA Hawreliak, B El-Dasher, H Lorenzana, G Kimminau, A Higginbotham, B Nagler, SM Vinko, WJ Murphy, T Whitcher, JS Wark, S Rothman, N Park

Onset of Negative Dispersion in the One-Component Plasma


JP Mithen, J Daligault, G Gregori

High resolution X-ray spectroscopy in fast electron transport studies

Proceedings of SPIE - The International Society for Optical Engineering 8080 (2011)

P Koester, P Koester, N Booth, CA Cecchetti, CA Cecchetti, H Chen, RG Evans, G Gregori, L Labate, L Labate, T Levato, B Li, M Makita, J Mithen, C Murphy, M Notley, R Pattathil, D Riley, N Woolsey, LA Gizzia, LA Gizzia

A detailed knowledge of the physical phenomena underlying the generation and the transport of fast electrons generated in high-intensity laser-matter interactions is of fundamental importance for the fast ignition scheme for inertial confinement fusion. Here we report on an experiment carried out with the VULCAN Petawatt beam and aimed at investigating the role of collisional return currents in the dynamics of the fast electron beam. To that scope, in the experiment counter-propagating electron beams were generated by double-sided irradiation of layered target foils containing a Ti layer. The experimental results were obtained for different time delays between the two laser beams as well as for single-sided irradiation of the target foils. The main diagnostics consisted of two bent mica crystal spectrometers placed at either side of the target foil. High-resolution X-ray spectra of the Ti emission lines in the range from the Lyα to the Kα line were recorded. In addition, 2D X-ray images with spectral resolution were obtained by means of a novel diagnostic technique, the energy-encoded pin-hole camera, based on the use of a pin-hole array equipped with a CCD detector working in single-photon regime. The spectroscopic measurements suggest a higher target temperature for well-aligned laser beams and a precise timing between the two beams. The experimental results are presented and compared to simulation results. © 2011 SPIE.

Simulations of copper single crystals subjected to rapid shear

Journal of Applied Physics 109 (2011)

A Higginbotham, EM Bringa, J Marian, N Park, M Suggit, JS Wark

We report on nonequilibrium molecular dynamics simulations of single crystals of copper experiencing rapid shear strain. A model system, with periodic boundary conditions, which includes a single dislocation dipole is subjected to a total shear strain of close to 10 on time-scales ranging from the instantaneous to 50 ps. When the system is strained on a time-scale short compared with a phonon period, the initial total applied shear is purely elastic, and the eventual temperature rise in the system due to the subsequent plastic work can be determined from the initial elastic strain energy. The rate at which this plastic work occurs, and heat is generated, depends on the dislocation velocity, which itself is a function of shear stress. A determination of the stress-dependence of the dislocation velocity allows us to construct a simple analytic model for the temperature rise in the system as a function of strain rate, and this model is found to be in good agreement with the simulations. For the effective dislocation density within the simulations, 7.8 10 11 cm - 2, we find that applying the total shear strain on time-scales of a few tens of picoseconds greatly reduces the final temperature. We discuss these results in the context of the growing interest in producing high pressure, solid-state matter, by quasi-isentropic (rather than shock) compression. © 2011 American Institute of Physics.

K-shell spectroscopy of Au plasma generated with a short-pulse laser

Canadian Journal of Physics 89 (2011) 647-651

C Zulick, F Dollar, H Chen, K Falk, G Gregori, A Hazi, CD Murphy, J Park, J Seely, CI Szabo, R Tommasini, R Shepherd, K Krushelnick

The production of X-rays from electron transitions into K-shell vacancies (Kα,β) emission) is a well-known process in atomic physics and has been extensively studied as a plasma diagnostic in low-and mid-Z materials. However, X-ray spectra from near neutral high-Z ions are very complex, and their interpretation requires the use of state-of-the-art atomic calculations. In this experiment, the Titan laser system at Lawrence Livermore National Laboratory was used to deliver an approximately 350 J laser pulse, with a 10 ps duration and a wavelength of 1054 nm, to a gold (Au) target. A transparent bent quartz crystal spectrometer with a hard X-ray energy window, ranging from 17 to 102 keV, was used to measure the emission spectrum. Kα1,α2 and Kβ1,γ1 transitions were observed over a range of target sizes. Additionally, a series of shots were conducted with a pre-ionizing long pulse (3 ns, 1-10 J, 527 nm) on the backside of the target. FLYCHK, an atomic non-LTE code, designed to provide ionization and population distributions, was used to model the experiment. K α/Kβ ratios were found to be in good agreement with the predicted value for room temperature Au targets. © 2011 Published by NRC Research Press.

X-ray scattering as a probe for warm dense mixtures and high-pressure miscibility

EPL 94 (2011)

K Wünsch, J Vorberger, G Gregori, DO Gericke

We develop a new theoretical approach that demonstrates the abilities of elastic X-ray scattering to yield thermodynamic, structural, and mixing properties of dense matter with multiple ion species. The novel decomposition of the electron structure factor in multi-component systems provides the basis to study dense mixtures as found in giant gas planets or during inertial confinement fusion. We show that the scattering signal differs significantly between single species, microscopic mixtures, and phase-separated fluids. Thus, these different phases can be distinguished experimentally via elastic X-ray scattering. © 2011 Europhysics Letters Association.

Precision X-ray spectroscopy of intense laser-plasma interactions

High Energy Density Physics 7 (2011) 105-109

NC Woolsey, RJ Clarke, D Doria, LA Gizzi, G Gregori, P Hakel, SB Hansen, P Koester, L Labate, T Levato, B Li, M Makita, RC Mancini, J Pasley, J Pasley, PP Rajeev, APL Robinson, E Wagenaars, JN Waugh, N Booth, N Booth

Polarisation sensitive emission spectroscopy measurements are reported for a petawatt laser-solid target interaction at intensities up to 5 × 1020 W cm-2. These measurements were single-shot and used pairs of highly-orientated graphite spectrometers to resolve the sulphur Ly-α doublet. The sulphur Ly-α1 component shows a large positive polarisation indicative of a low energy electron beam in the plasma, the Ly-α2 component acts as a cross-spectrometer calibration. The measurements show a significant anisotropic or beam-like component to a cold return current. © 2011 Elsevier B.V.