Publications associated with Thin Film Quantum Materials

Room-temperature helimagnetism in FeGe thin films.

Sci Rep 7 (0) 123-

SL Zhang, I Stasinopoulos, T Lancaster, F Xiao, A Bauer, F Rucker, AA Baker, AI Figueroa, Z Salman, FL Pratt, SJ Blundell, T Prokscha, A Suter, J Waizner, M Garst, D Grundler, G van der Laan, C Pfleiderer, T Hesjedal

Chiral magnets are promising materials for the realisation of high-density and low-power spintronic memory devices. For these future applications, a key requirement is the synthesis of appropriate materials in the form of thin films ordering well above room temperature. Driven by the Dzyaloshinskii-Moriya interaction, the cubic compound FeGe exhibits helimagnetism with a relatively high transition temperature of 278 K in bulk crystals. We demonstrate that this temperature can be enhanced significantly in thin films. Using x-ray scattering and ferromagnetic resonance techniques, we provide unambiguous experimental evidence for long-wavelength helimagnetic order at room temperature and magnetic properties similar to the bulk material. We obtain α intr = 0.0036 ± 0.0003 at 310 K for the intrinsic damping parameter. We probe the dynamics of the system by means of muon-spin rotation, indicating that the ground state is reached via a freezing out of slow dynamics. Our work paves the way towards the fabrication of thin films of chiral magnets that host certain spin whirls, so-called skyrmions, at room temperature and potentially offer integrability into modern electronics.

Show full publication list