Publications


The radial velocity experiment (RAVE): Fourth data release

Astronomical Journal 146 (2013)

G Kordopatis, G Gilmore, M Steinmetz, C Boeche, GM Seabroke, A Siebert, T Zwitter, J Binney, P De Laverny, A Recio-Blanco, MEK Williams, T Piffl, H Enke, S Roeser, A Bijaoui, RFG Wyse, K Freeman, U Munari, I Carrillo, B Anguiano, D Burton, R Campbell, CJP Cass, K Fiegert, M Hartley, QA Parker, W Reid, A Ritter, KS Russell, M Stupar, FG Watson, O Bienaymé, J Bland-Hawthorn, O Gerhard, BK Gibson, EK Grebel, A Helmi, JF Navarro, C Conrad, B Famaey, C Faure, A Just, J Kos, G Matijevič, PJ McMillan, I Minchev, R Scholz, S Sharma, A Siviero, E Wylie De Boer, M Žerjal

We present the stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity), radial velocities, individual abundances, and distances determined for 425,561 stars, which constitute the fourth public data release of the RAdial Velocity Experiment (RAVE). The stellar atmospheric parameters are computed using a new pipeline, based on the algorithms of MATISSE and DEGAS. The spectral degeneracies and the Two Micron All Sky Survey photometric information are now better taken into consideration, improving the parameter determination compared to the previous RAVE data releases. The individual abundances for six elements (magnesium, aluminum, silicon, titanium, iron, and nickel) are also given, based on a special-purpose pipeline that is also improved compared to that available for the RAVE DR3 and Chemical DR1 data releases. Together with photometric information and proper motions, these data can be retrieved from the RAVE collaboration Web site and the Vizier database. © 2013. The American Astronomical Society. All rights reserved.


Fast and slow rotators in the densest environments: a FLAMES/GIRAFFE IFS study of galaxies in Abell 1689 at z=0.183

ArXiv (2012)

F D'Eugenio, RCW Houghton, RL Davies, ED Bontà

We present FLAMES/GIRAFFE integral field spectroscopy of 30 galaxies in the massive cluster Abell 1689 at z = 0.183. Conducting an analysis similar to that of ATLAS3D, we extend the baseline of the kinematic morphology-density relation by an order of magnitude in projected density and show that it is possible to use existing instruments to identify slow and fast rotators beyond the local Universe. We find 4.5 +- 1.0 slow rotators with a distribution in magnitude similar to those in the Virgo cluster. The overall slow rotator fraction of our Abell 1689 sample is 0.15 +- 0.03, the same as in Virgo using our selection criteria. This suggests that the fraction of slow rotators in a cluster is not strongly dependent on its density. However, within Abell 1689, we find that the fraction of slow rotators increases towards the centre, as was also found in the Virgo cluster.


The effect of phase front deformation on the growth of the filamentation instability in laser-plasma interactions

New Journal of Physics 15 (2013)

E Higson, R Trines, J Jiang, R Bingham, KL Lancaster, JR Davies, PA Norreys

Laser pulses of 0.9 kJ/1 ns/1053 nm were focused onto low-Z plastic targets in both spherical and planar geometry. The uniformity of the resulting plasma production was studied using x-ray pinhole imaging. Evidence is provided suggesting that thermal filamentation starts to occur for irradiances on the target of Iλ2 1014 W cm-2 μm 2, even on deployment of phase plates to improve the focal spot spatial uniformity. The experiments are supported by both analytical modelling and two-dimensional particle-in-cell simulations. The implications for the applications of laser-plasma interactions that require high degrees of uniform irradiation are discussed. © IOP Publishing and Deutsche Physikalische Gesellschaft.


Effect of collisions on amplification of laser beams by Brillouin scattering in plasmas

Physics of Plasmas 20 (2013)

KA Humphrey, DC Speirs, R Bingham, RMGM Trines, P Norreys, F Fiuza, RA Cairns, LO Silva

We report on particle in cell simulations of energy transfer between a laser pump beam and a counter-propagating seed beam using the Brillouin scattering process in uniform plasma including collisions. The results presented show that the ion acoustic waves excited through naturally occurring Brillouin scattering of the pump field are preferentially damped without affecting the driven Brillouin scattering process resulting from the beating of the pump and seed fields together. We find that collisions, including the effects of Landau damping, allow for a more efficient transfer of energy between the laser beams, and a significant reduction in the amount of seed pre-pulse produced. © 2013 AIP Publishing LLC.


EIDOSCOPE: Particle acceleration at plasma boundaries

Experimental Astronomy 33 (2012) 491-527

A Vaivads, G Andersson, SD Bale, CM Cully, J de Keyser, M Fujimoto, S Grahn, S Haaland, H Ji, YV Khotyaintsev, A Lazarian, B Lavraud, IR Mann, R Nakamura, TKM Nakamura, Y Narita, A Retinò, F Sahraoui, A Schekochihin, SJ Schwartz, I Shinohara, L Sorriso-Valvo

We describe the mission concept of how ESA can make a major contribution to the Japanese Canadian multi-spacecraft mission SCOPE by adding one cost-effective spacecraft EIDO (Electron and Ion Dynamics Observatory), which has a comprehensive and optimized plasma payload to address the physics of particle acceleration. The combined mission EIDOSCOPE will distinguish amongst and quantify the governing processes of particle acceleration at several important plasma boundaries and their associated boundary layers: collisionless shocks, plasma jet fronts, thin current sheets and turbulent boundary layers. Particle acceleration and associated cross-scale coupling is one of the key outstanding topics to be addressed in the Plasma Universe. The very important science questions that only the combined EIDOSCOPE mission will be able to tackle are: 1) Quantitatively, what are the processes and efficiencies with which both electrons and ions are selectively injected and subsequently accelerated by collisionless shocks? 2) How does small-scale electron and ion acceleration at jet fronts due to kinetic processes couple simultaneously to large scale acceleration due to fluid (MHD) mechanisms? 3) How does multi-scale coupling govern acceleration mechanisms at electron, ion and fluid scales in thin current sheets? 4) How do particle acceleration processes inside turbulent boundary layers depend on turbulence properties at ion/electron scales? EIDO particle instruments are capable of resolving full 3D particle distribution functions in both thermal and suprathermal regimes and at high enough temporal resolution to resolve the relevant scales even in very dynamic plasma processes. The EIDO spin axis is designed to be sun-pointing, allowing EIDO to carry out the most sensitive electric field measurements ever accomplished in the outer magnetosphere. Combined with a nearby SCOPE Far Daughter satellite, EIDO will form a second pair (in addition to SCOPE Mother-Near Daughter) of closely separated satellites that provides the unique capability to measure the 3D electric field with high accuracy and sensitivity. All EIDO instrumentation are state-of-the-art technology with heritage from many recent missions. The EIDOSCOPE orbit will be close to equatorial with apogee 25-30 RE and perigee 8-10 RE. In the course of one year the orbit will cross all the major plasma boundaries in the outer magnetosphere; bow shock, magnetopause and magnetotail current sheets, jet fronts and turbulent boundary layers. EIDO offers excellent cost/benefits for ESA, as for only a fraction of an M-class mission cost ESA can become an integral part of a major multi-agency L-class level mission that addresses outstanding science questions for the benefit of the European science community. © 2011 Springer Science+Business Media B.V.


X-ray Thomson scattering on shocked graphite

High Energy Density Physics 8 (2012) 46-49

D Kraus, A Otten, A Frank, V Bagnoud, A Blažević, DO Gericke, G Gregori, A Ortner, G Schaumann, D Schumacher, J Vorberger, F Wagner, K Wünsch, M Roth

We present measurements of the changes in the microscopic structure of graphite in a laser-driven shock experiment with X-ray scattering. Laser radiation with intensities of ∼2 × 10 13 W/cm 2 compressed the carbon samples by a factor of two reaching pressures of ∼90 GPa. Due to the change of the crystalline structure the scattered signals of the probe radiation were modified significantly in intensity and spectral composition compared to the scattering on cold samples. It is shown that the elastic scattering on tightly bound electrons increases strongly due to the phase transition whereas the inelastic scattering on weakly bound electrons remains nearly unchanged for the chosen geometry. © 2011 Elsevier B.V.


AGN feedback using AMR cosmological simulations

ArXiv (2011)

Y Dubois, J Devriendt, A Slyz, R Teyssier

Feedback processes are thought to solve some of the long-standing issues of the numerical modelling of galaxy formation: over-cooling, low angular momentum, massive blue galaxies, extra-galactic enrichment, etc. The accretion of gas onto super-massive black holes in the centre of massive galaxies can release tremendous amounts of energy to the surrounding medium. We show, with cosmological Adaptive Mesh Refinement simulations, how the growth of black holes is regulated by the feedback from Active Galactic Nuclei using a new dual jet/heating mechanism. We discuss how this large amount of feedback is able to modify the cold baryon content of galaxies, and perturb the properties of the hot plasma in their vicinity.


Constraining stellar assembly and active galactic nucleus feedback at the peak epoch of star formation

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 425 (2012) L96-L100

T Kimm, S Kaviraj, JEG Devriendt, SH Cohen, RA Windhorst, Y Dubois, A Slyz, NP Hathi, RRE Jr, RW O'Connell, MA Dopita, J Silk


Quantum hydrodynamics of strongly coupled electron fluids

PHYSICAL REVIEW E 85 (2012) ARTN 046408

R Schmidt, BJB Crowley, J Mithen, G Gregori


The non-thermal emission of extended radio galaxy lobes with curved electron spectra

ArXiv (2011)

P Duffy, KM Blundell

The existing theoretical framework for the energies stored in the synchrotron-emitting lobes of radio galaxies and quasars doesn't properly account for the curved spectral shape that many of them exhibit. We characterise these spectra using parameters that are straightforwardly observable in the era of high-resolution, low-frequency radio astronomy: the spectral curvature and the turnover in the frequency spectrum. This characterisation gives the Lorentz factor at the turnover in the energy distribution (we point out that this is distinctly different from the Lorentz factor corresponding to the turnover frequency in a way that depends on the amount of curvature in the spectrum) and readily gives the equipartition magnetic field strength and the total energy of the radiating plasma obviating the need for any assumed values of the cutoff frequencies to calculate these important physical quantities. This framework readily yields the form of the X-ray emission due to inverse-Compton (IC) scattering of Cosmic Microwave Background (CMB) photons by the electrons in the plasma having Lorentz factors of $\sim$1000. We also present the contribution to CMB anisotropies due to relativistic plasmas such as giant radio galaxy lobes, expressed in terms of the extent to which the lobes have their magnetic field and particle energies are in equipartition with one another.


Self-organized electromagnetic field structures in laser-produced counter-streaming plasmas

Nature Physics (2012)

NL Kugland, DD Ryutov, P-Y Chang, RP Drake, G Fiksel, DH Froula, SH Glenzer, G Gregori, M Grosskopf, M Koenig, Y Kuramitsu, C Kuranz, MC Levy, E Liang, J Meinecke, F Miniati, T Morita, A Pelka, C Plechaty, R Presura, A Ravasio, BA Remington, B Reville, JS Ross, Y Sakawa, A Spitkovsky, H Takabe, H-S Park


Feeding compact bulges and supermassive black holes with low angular momentum cosmic gas at high redshift

Monthly Notices of the Royal Astronomical Society 423 (2012) 3616-3630

Y Dubois, C Pichon, M Haehnelt, T Kimm, A Slyz, J Devriendt, D Pogosyan

We use cosmological hydrodynamical simulations to show that a significant fraction of the gas in high redshift rare massive haloes falls nearly radially to their very centre on extremely short time-scales. This process results in the formation of very compact bulges with specific angular momentum a factor of 5-30 smaller than the average angular momentum of the baryons in the whole halo. Such low angular momentum originates from both segregation and effective cancellation when the gas flows to the centre of the halo along well-defined cold filamentary streams. These filaments penetrate deep inside the halo and connect to the bulge from multiple rapidly changing directions. Structures falling in along the filaments (satellite galaxies) or formed by gravitational instabilities triggered by the inflow (star clusters) further reduce the angular momentum of the gas in the bulge. Finally, the fraction of gas radially falling to the centre appears to increase with the mass of the halo; we argue that this is most likely due to an enhanced cancellation of angular momentum in rarer haloes which are fed by more isotropically distributed cold streams. Such an increasingly efficient funnelling of low angular momentum gas to the centre of very massive haloes at high redshift may account for the rapid pace at which the most massive supermassive black holes grow to reach observed masses around 10 9M ⊙ at an epoch when the Universe is barely 1 Gyr old. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.


The Epoch of Disk Settling: z~1 to Now

ArXiv (2012)

SA Kassin, BJ Weiner, SM Faber, JP Gardner, CNA Willmer, AL Coil, MC Cooper, J Devriendt, AA Dutton, P Guhathakurta, DC Koo, AJ Metevier, KG Noeske, JR Primack

We present evidence from a sample of 544 galaxies from the DEEP2 Survey for evolution of the internal kinematics of blue galaxies with stellar masses ranging 8.0 < log M* (M_Sun) < 10.7 over 0.2<z<1.2. DEEP2 provides galaxy spectra and Hubble imaging from which we measure emission-line kinematics and galaxy inclinations, respectively. Our large sample allows us to overcome scatter intrinsic to galaxy properties in order to examine trends in kinematics. We find that at a fixed stellar mass galaxies systematically decrease in disordered motions and increase in rotation velocity and potential well depth with time. Massive galaxies are the most well-ordered at all times examined, with higher rotation velocities and less disordered motions than less massive galaxies. We quantify disordered motions with an integrated gas velocity dispersion corrected for beam smearing (sigma_g). It is unlike the typical pressure-supported velocity dispersion measured for early type galaxies and galaxy bulges. Because both seeing and the width of our spectral slits comprise a significant fraction of the galaxy sizes, sigma_g integrates over velocity gradients on large scales which can correspond to non-ordered gas kinematics. We compile measurements of galaxy kinematics from the literature over 1.2<z<3.8 and do not find any trends with redshift, likely for the most part because these datasets are biased toward the most highly star-forming systems. In summary, over the last ~8 billion years since z=1.2, blue galaxies evolve from disordered to ordered systems as they settle to become the rotation-dominated disk galaxies observed in the Universe today, with the most massive galaxies being the most evolved at any time.


Measurements of radiative shock properties using X-ray Thomson scattering

IEEE International Conference on Plasma Science (2009)

A Visco, RP Drake, MJ Grosskopf, SH Glenzer, DH Froula, G Gregori


Constraining stellar assembly and AGN feedback at the peak epoch of star formation

ArXiv (2012)

T Kimm, S Kaviraj, J Devriendt, S Cohen, R Windhorst, Y Dubois, A Slyz, N Hathi, RR Jr, R O'Connell, M Dopita, J Silk

We study stellar assembly and feedback from active galactic nuclei (AGN) around the epoch of peak star formation (1<z<2), by comparing hydrodynamic simulations to rest-frame UV-optical galaxy colours from the Wide Field Camera 3 (WFC3) Early-Release Science (ERS) Programme. Our Adaptive Mesh Refinement simulations include metal-dependent radiative cooling, star formation, kinetic outflows due to supernova explosions, and feedback from supermassive black holes. Our model assumes that when gas accretes onto black holes, a fraction of the energy is used to form either thermal winds or sub-relativistic momentum-imparting collimated jets, depending on the accretion rate. We find that the predicted rest-frame UV-optical colours of galaxies in the model that includes AGN feedback is in broad agreement with the observed colours of the WFC3 ERS sample at 1<z<2. The predicted number of massive galaxies also matches well with observations in this redshift range. However, the massive galaxies are predicted to show higher levels of residual star formation activity than the observational estimates, suggesting the need for further suppression of star formation without significantly altering the stellar mass function. We discuss possible improvements, involving faster stellar assembly through enhanced star formation during galaxy mergers while star formation at the peak epoch is still modulated by the AGN feedback.


An oxford swift integral field spectroscopy study of 14 early-type galaxies in the coma cluster

Monthly Notices of the Royal Astronomical Society 425 (2012) 1521-1526

N Scott, R Houghton, RL Davies, M Cappellari, N Thatte, F Clarke, M Tecza

As a demonstration of the capabilities of the new Oxford SWIFT integral field spectrograph, we present first observations for a set of 14 early-type galaxies in the core of the Coma cluster. Our data consist of I- and z-band spatially resolved spectroscopy obtained with the Oxford SWIFT spectrograph, combined with r-band photometry from the Sloan Digital Sky Survey archive for 14 early-type galaxies. We derive spatially resolved kinematics for all objects from observations of the calcium triplet absorption features at ∼8500Å. Using this kinematic information we classify galaxies as either fast rotators or slow rotators. We compare the fraction of fast and slow rotators in our sample, representing the densest environment in the nearby Universe, to results from the ATLAS 3D survey, finding that the slow rotator fraction is ∼50per cent larger in the core of the Coma cluster than in the volume-limited ATLAS 3D sample, a 1.2σ increase given our selection criteria. Comparing our sample to the Virgo cluster core only (which is 24 times less dense than the Coma core) we find no evidence of an increase in the slow rotator fraction. Combining measurements of the effective velocity dispersion σ e with the photometric data we determine the Fundamental Plane for our sample of galaxies. We find that the use of the average velocity dispersion within 1 effective radius, σ e, reduces the residuals by 13per cent with respect to comparable studies using central velocity dispersions, consistent with other recent integral field Fundamental Plane determinations. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.


The ATLAS 3D project - XI. Dense molecular gas properties of CO-luminous early-type galaxies

Monthly Notices of the Royal Astronomical Society 421 (2012) 1298-1314

A Crocker, M Krips, M Bureau, LM Young, TA Davis, E Bayet, K Alatalo, L Blitz, M Bois, F Bournaud, M Cappellari, RL Davies, PT de Zeeuw, P-A Duc, E Emsellem, S Khochfar, D Krajnović, H Kuntschner, P-Y Lablanche, RM Mcdermid, R Morganti, T Naab, T Oosterloo, M Sarzi, N Scott, P Serra, A-M Weijmans

Surveying 18 12CO-bright galaxies from the ATLAS 3D early-type galaxy sample with the Institut de Radio Astronomie Millimétrique (IRAM) 30-m telescope, we detect 13CO(1-0) and 13CO(2-1) in all 18 galaxies, HCN(1-0) in 12/18 and HCO +(1-0) in 10/18. We find that the line ratios 12CO(1-0)/ 13CO(1-0) and 12CO(1-0)/HCN(1-0) are clearly correlated with several galaxy properties: total stellar mass, luminosity-weighted mean stellar age, molecular-to-atomic gas ratio, dust temperature and dust morphology. We suggest that these correlations are primarily governed by the optical depth in the 12CO lines; interacting, accreting and/or starbursting early-type galaxies have more optically thin molecular gas while those with settled dust and gas discs host optically thick molecular gas. The ranges of the integrated line intensity ratios generally overlap with those of spirals, although we note some outliers in the 12CO(1-0)/ 13CO(1-0), 12CO(2-1)/ 13CO(2-1) and HCN/HCO +(1-0) ratios. In particular, three galaxies are found to have very low 12CO(1-0)/ 13CO(1-0) and 12CO(2-1)/ 13CO(2-1) ratios. Such low ratios may signal particularly stable molecular gas which creates stars less efficiently than 'normal' (i.e. below Schmidt-Kennicutt prediction), consistent with the low dust temperatures seen in these galaxies. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.


X-ray surface brightness and gas density fluctuations in the Coma cluster

Monthly Notices of the Royal Astronomical Society 421 (2012) 1123-1135

E Churazov, A Vikhlinin, I Zhuravleva, A Schekochihin, I Parrish, R Sunyaev, W Forman, H Böhringer, S Randall

X-ray surface brightness fluctuations in the core (650 × 650 kpc) region of the Coma cluster observed with XMM-Newton and Chandra are analysed using a 2D power spectrum approach. The resulting 2D spectra are converted to 3D power spectra of gas density fluctuations. Our independent analyses of the XMM-Newton and Chandra observations are in excellent agreement and provide the most sensitive measurements of surface brightness and density fluctuations for a hot cluster. We find that the characteristic amplitude of the volume filling density fluctuations relative to the smooth underlying density distribution varies from 7-10 per cent on scales of ~500kpc down to ~5 per cent on scales of ~30kpc. On smaller spatial scales, projection effects smear the density fluctuations by a large factor, precluding strong limits on the fluctuations in 3D. On the largest scales probed (hundreds of kpc), the dominant contributions to the observed fluctuations most likely arise from perturbations of the gravitational potential by the two most massive galaxies in Coma, NGC4874 and NGC4889, and the low-entropy gas brought to the cluster by an infalling group. Other plausible sources of X-ray surface brightness fluctuations are discussed, including turbulence, metal abundance variations and unresolved sources. Despite a variety of possible origins for density fluctuations, the gas in the Coma cluster core is remarkably homogeneous on scales from ~500 to ~30kpc. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.


Measurement of radiative shock properties by X-ray Thomson scattering

Physical Review Letters 108 (2012)

AJ Visco, RP Drake, SH Glenzer, T Döppner, G Gregori, DH Froula, MJ Grosskopf

X-ray Thomson scattering has enabled us to measure the temperature of a shocked layer, produced in the laboratory, that is relevant to shocks emerging from supernovas. High energy lasers are used to create a shock in argon gas which is probed by x-ray scattering. The scattered, inelastic Compton feature allows inference of the electron temperature. It is measured to be 34 eV in the radiative precursor and ∼60eV near the shock. Comparison of energy fluxes implied by the data demonstrates that the shock wave is strongly radiative. © 2012 American Physical Society.


Subcritical fluctuations and suppression of turbulence in differentially rotating gyrokinetic plasmas

PLASMA PHYSICS AND CONTROLLED FUSION 54 (2012) ARTN 055011

AA Schekochihin, EG Highcock, SC Cowley