EIDOSCOPE: Particle acceleration at plasma boundaries

Experimental Astronomy 33 (2012) 491-527

A Vaivads, G Andersson, SD Bale, CM Cully, J de Keyser, M Fujimoto, S Grahn, S Haaland, H Ji, YV Khotyaintsev, A Lazarian, B Lavraud, IR Mann, R Nakamura, TKM Nakamura, Y Narita, A Retinò, F Sahraoui, A Schekochihin, SJ Schwartz, I Shinohara, L Sorriso-Valvo

We describe the mission concept of how ESA can make a major contribution to the Japanese Canadian multi-spacecraft mission SCOPE by adding one cost-effective spacecraft EIDO (Electron and Ion Dynamics Observatory), which has a comprehensive and optimized plasma payload to address the physics of particle acceleration. The combined mission EIDOSCOPE will distinguish amongst and quantify the governing processes of particle acceleration at several important plasma boundaries and their associated boundary layers: collisionless shocks, plasma jet fronts, thin current sheets and turbulent boundary layers. Particle acceleration and associated cross-scale coupling is one of the key outstanding topics to be addressed in the Plasma Universe. The very important science questions that only the combined EIDOSCOPE mission will be able to tackle are: 1) Quantitatively, what are the processes and efficiencies with which both electrons and ions are selectively injected and subsequently accelerated by collisionless shocks? 2) How does small-scale electron and ion acceleration at jet fronts due to kinetic processes couple simultaneously to large scale acceleration due to fluid (MHD) mechanisms? 3) How does multi-scale coupling govern acceleration mechanisms at electron, ion and fluid scales in thin current sheets? 4) How do particle acceleration processes inside turbulent boundary layers depend on turbulence properties at ion/electron scales? EIDO particle instruments are capable of resolving full 3D particle distribution functions in both thermal and suprathermal regimes and at high enough temporal resolution to resolve the relevant scales even in very dynamic plasma processes. The EIDO spin axis is designed to be sun-pointing, allowing EIDO to carry out the most sensitive electric field measurements ever accomplished in the outer magnetosphere. Combined with a nearby SCOPE Far Daughter satellite, EIDO will form a second pair (in addition to SCOPE Mother-Near Daughter) of closely separated satellites that provides the unique capability to measure the 3D electric field with high accuracy and sensitivity. All EIDO instrumentation are state-of-the-art technology with heritage from many recent missions. The EIDOSCOPE orbit will be close to equatorial with apogee 25-30 RE and perigee 8-10 RE. In the course of one year the orbit will cross all the major plasma boundaries in the outer magnetosphere; bow shock, magnetopause and magnetotail current sheets, jet fronts and turbulent boundary layers. EIDO offers excellent cost/benefits for ESA, as for only a fraction of an M-class mission cost ESA can become an integral part of a major multi-agency L-class level mission that addresses outstanding science questions for the benefit of the European science community. © 2011 Springer Science+Business Media B.V.

Global gyrokinetic turbulence simulations of MAST plasmas

Plasma Physics and Controlled Fusion 54 (2012)

S Saarelma, G Colyer, AR Field, CM Roach, A Bottino, P Hill, B McMillan, A Peeters

Electrostatic gyrokinetic analyses are presented for an L-mode discharge with an internal transport barrier, from the spherical tokamak, MAST. Local and global microstability analysis finds similar linear growth rates for ion temperature gradient (ITG) driven modes. When the electron response is assumed to be adiabatic, growth rates are found to be lower than the experimental E×B flow shearing rate. Including kinetic electrons, without collisions, increases the ITG growth rates above the flow shearing rate, and these modes are found to be linearly unstable in the outer part of the plasma only. In global simulations the flow shear stabilization is found to be asymmetric with respect to the direction of the flow: there is a small destabilizing effect at low flow shear when the flow is in the co-direction. Global non-linear simulations with kinetic electrons and including the flow shear effects predict turbulent ion heat transport that is well above the neoclassical level in the region outside the internal transport barrier in this MAST plasma. In non-linear simulations we also find turbulence extending from the outer part of the plasma into the linearly stable core region. © 2012 IOP Publishing Ltd.

The SAURON project - XX. The Spitzer [3.6] - [4.5] colour in early-type galaxies: Colours, colour gradients and inverted scaling relations

Monthly Notices of the Royal Astronomical Society 419 (2012) 2031-2053

RF Peletier, E Kutdemir, G van der Wolk, J Falcón-Barroso, R Bacon, M Bureau, M Cappellari, RL Davies, PT de Zeeuw, E Emsellem, D Krajnović, H Kuntschner, RM McDermid, M Sarzi, N Scott, KL Shapiro, RCE van den Bosch, G van de Ven

We investigate the [3.6]-[4.5]Spitzer-IRAC colour behaviour of the early-type galaxies of the SAURON survey, a representative sample of 48 nearby ellipticals and lenticulars. We investigate how this colour, which is unaffected by dust extinction, can be used to constrain the stellar populations in these galaxies. We find a tight relation between the [3.6]-[4.5] colour and effective velocity dispersion, a good mass indicator in early-type galaxies: ([3.6]-[4.5]) e = (-0.109 0.007)+ (0.154 0.016). Contrary to other colours in the optical and near-infrared, we find that the colours become bluer for larger galaxies. The relations are tighter when using the colour insider e (scatter 0.013mag), rather than the much smaller r e/8 aperture (scatter 0.023mag), due to the presence of young populations in the central regions. We also obtain strong correlations between the [3.6]-[4.5] colour and three strong absorption lines (H, Mgb and Fe 5015). Comparing our data with the models of Marigo et al., which show that more metal rich galaxies are bluer, we can explain our results in a way consistent with results from the optical, by stating that larger galaxies are more metal rich. The blueing is caused by a strong CO absorption band, whose line strength increases strongly with decreasing temperature and which covers a considerable fraction of the 4.5-m filter. In galaxies that contain a compact radio source, the [3.6]-[4.5] colour is generally slightly redder (by 0.015 0.007mag using the r e/8 aperture) than in the other galaxies, indicating small amounts of either hot dust, non-thermal emission, or young stars near the centre. We find that the large majority of the galaxies show redder colours with increasing radius. Removing the regions with evidence for young stellar populations (from the H absorption line) and interpreting the colour gradients as metallicity gradients, we find that our galaxies are more metal poor going outwards. The radial [3.6]-[4.5] gradients correlate very well with the metallicity gradients derived from optical line indices. We do not find any correlation between the gradients and galaxy mass; at every mass, galaxies display a real range in metallicity gradients. Consistent with our previous work on line indices, we find a tight relation between local [3.6]-[4.5] colour and local escape velocity. The small scatter from galaxy to galaxy, although not negligible, shows that the amount and distribution of the dark matter relative to the visible light cannot be too different from galaxy to galaxy. Due to the lower sensitivity of the [3.6]-[4.5] colour to young stellar populations, this relation is more useful to infer the galaxy potential than the Mgb-v esc relation. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.

The opto-mechanical design of HARMONI: A first light integral field spectrograph for the E-ELT

Proceedings of SPIE - The International Society for Optical Engineering 8446 (2012)

NA Thatte, M Tecza, F Clarke, J Lynn, RL Davies, S Arribas, J Kosmalski, R Bacon, A Remillieux, AB Fragoso-Lopez, J Fuentes, F Gracia, D Sosa, E Mediavilla, D Freeman, T Fusco, F Gago, AM Gallie, D Montgomery, D Lunney, H Schnetler, A Garcia

HARMONI is a visible and near-IR integral field spectrograph, providing the E-ELT's spectroscopic capability at first light. It obtains simultaneous spectra of 32000 spaxels, at a range of resolving powers from R∼4000 to R∼20000, covering the wavelength range from 0.47 to 2.45 ìm. The 256 ? 128 spaxel field of view has four different plate scales, with the coarsest scale (40 mas) providing a 5? ? 10? FoV, while the finest scale is a factor of 10 finer (4mas). We describe the opto-mechanical design of HARMONI, prior to the start of preliminary design, including the main subsystems - namely the image de-rotator, the scale-changing optics, the splitting and slicing optics, and the spectrographs. We also present the secondary guiding system, the pupil imaging optics, the field and pupil stops, the natural guide star wavefront sensor, and the calibration unit. © 2012 SPIE.

The ATLAS project - XII. Recovery of the mass-to-light ratio of simulated early-type barred galaxies with axisymmetric dynamical models

Monthly Notices of the Royal Astronomical Society 424 (2012) 1495-1521

P-Y Lablanche, M Cappellari, E Emsellem, F Bournaud, L Michel-Dansac, K Alatalo, L Blitz, M Bois, M Bureau, RL Davies, TA Davis, PT de Zeeuw, P-A Duc, S Khochfar, D Krajnović, H Kuntschner, R Morganti, RM McDermid, T Naab, T Oosterloo, M Sarzi, N Scott, P Serra, A-M Weijmans, LM Young

We investigate the accuracy in the recovery of the stellar dynamics of barred galaxies when using axisymmetric dynamical models. We do this by trying to recover the mass-to-light ratio (M/L) and the anisotropy of realistic galaxy simulations using the Jeans Anisotropic Multi-Gaussian Expansion (JAM) modelling method. However, given that the biases we find are mostly due to an application of an axisymmetric modelling algorithm to a non-axisymmetric system and in particular to inaccuracies in the deprojected mass model, our results are relevant for general axisymmetric modelling methods. We run N-body collisionless simulations to build a library with various luminosity distribution, constructed to mimic real individual galaxies, with realistic anisotropy. The final result of our evolved library of simulations contains both barred and unbarred galaxies. The JAM method assumes an axisymmetric mass distribution, and we adopt a spatially constant M/L and anisotropy distributions. The models are fitted to two-dimensional maps of the second velocity moments of the simulations for various viewing angles [position angle (PA) of the bar and inclination of the galaxy]. We find that the inclination is generally well recovered by the JAM models, for both barred and unbarred simulations. For unbarred simulations the M/L is also accurately recovered, with negligible median bias and with a maximum one of just Δ(M/L) < 1.5 per cent when the galaxy is not too close to face on. At very low inclinations the M/L can be significantly overestimated (9 per cent in our tests, but errors can be larger for very face-on views). This is in agreement with previous studies. For barred simulations the M/L is on average (when PA = 45°) essentially unbiased, but we measure an over/underestimation of up to Δ(M/L) = 15 per cent in our tests. The sign of the M/L bias depends on the PA of the bar as expected: overestimation occurs when the bar is closer to end-on, due to the increased stellar motion along the line-of-sight, and underestimation otherwise. For unbarred simulations, the JAM models are able to recover the mean value of the anisotropy with bias, within the region constrained by the kinematics. However when a bar is present, or for nearly face-on models, the recovered anisotropy varies wildly, with biases up to Δβ z≈ 0.3. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.

AGN feedback using AMR cosmological simulations

ArXiv (2011)

Y Dubois, J Devriendt, A Slyz, R Teyssier

Feedback processes are thought to solve some of the long-standing issues of the numerical modelling of galaxy formation: over-cooling, low angular momentum, massive blue galaxies, extra-galactic enrichment, etc. The accretion of gas onto super-massive black holes in the centre of massive galaxies can release tremendous amounts of energy to the surrounding medium. We show, with cosmological Adaptive Mesh Refinement simulations, how the growth of black holes is regulated by the feedback from Active Galactic Nuclei using a new dual jet/heating mechanism. We discuss how this large amount of feedback is able to modify the cold baryon content of galaxies, and perturb the properties of the hot plasma in their vicinity.

The Radius of Baryonic Collapse in Disc Galaxy Formation

ArXiv (2012)

SA Kassin, J Devriendt, SM Fall, RSD Jong, B Allgood, JR Primack

In the standard picture of disc galaxy formation, baryons and dark matter receive the same tidal torques, and therefore approximately the same initial specific angular momentum. However, observations indicate that disc galaxies typically have only about half as much specific angular momentum as their dark matter haloes. We argue this does not necessarily imply that baryons lose this much specific angular momentum as they form galaxies. It may instead indicate that galaxies are most directly related to the inner regions of their host haloes, as may be expected in a scenario where baryons in the inner parts of haloes collapse first. A limiting case is examined under the idealised assumption of perfect angular momentum conservation. Namely, we determine the density contrast Delta, with respect to the critical density of the Universe, by which dark matter haloes need to be defined in order to have the same average specific angular momentum as the galaxies they host. Under the assumption that galaxies are related to haloes via their characteristic rotation velocities, the necessary Delta is ~600. This Delta corresponds to an average halo radius and mass which are ~60% and ~75%, respectively, of the virial values (i.e., for Delta = 200). We refer to this radius as the radius of baryonic collapse R_BC, since if specific angular momentum is conserved perfectly, baryons would come from within it. It is not likely a simple step function due to the complex gastrophysics involved, therefore we regard it as an effective radius. In summary, the difference between the predicted initial and the observed final specific angular momentum of galaxies, which is conventionally attributed solely to angular momentum loss, can more naturally be explained by a preference for collapse of baryons within R_BC, with possibly some later angular momentum transfer.

Measurements of radiative shock properties using X-ray Thomson scattering

IEEE International Conference on Plasma Science (2009)

A Visco, RP Drake, MJ Grosskopf, SH Glenzer, DH Froula, G Gregori

Controlling fast-electron-beam divergence using two laser pulses

Physical Review Letters 109 (2012)

RHH Scott, SJ Rose, PA Norreys, K Markey, KL Lancaster, CM Brenner, IO Musgrave, APL Robinson, MM Notley, D Neely, C Beaucourt, JJ Santos, J-L Feugeas, P Nicolaï, G Malka, VT Tikhonchuk, H-P Schlenvoigt, SD Baton, CP Ridgers, RJ Gray, P McKenna, J Pasley, K Li, JR Davies

This Letter describes the first experimental demonstration of the guiding of a relativistic electron beam in a solid target using two colinear, relativistically intense, picosecond laser pulses. The first pulse creates a magnetic field that guides the higher-current, fast-electron beam generated by the second pulse. The effects of intensity ratio, delay, total energy, and intrinsic prepulse are examined. Thermal and Kα imaging show reduced emission size, increased peak emission, and increased total emission at delays of 4-6 ps, an intensity ratio of 10 1 (second:first) and a total energy of 186 J. In comparison to a single, high-contrast shot, the inferred fast-electron divergence is reduced by 2.7 times, while the fast-electron current density is increased by a factor of 1.8. The enhancements are reproduced with modeling and are shown to be due to the self-generation of magnetic fields. Such a scheme could be of considerable benefit to fast-ignition inertial fusion. © 2012 American Physical Society.

Feeding compact bulges and supermassive black holes with low angular momentum cosmic gas at high redshift

Monthly Notices of the Royal Astronomical Society 423 (2012) 3616-3630

Y Dubois, C Pichon, T Kimm, A Slyz, J Devriendt, M Haehnelt, D Pogosyan

We use cosmological hydrodynamical simulations to show that a significant fraction of the gas in high redshift rare massive haloes falls nearly radially to their very centre on extremely short time-scales. This process results in the formation of very compact bulges with specific angular momentum a factor of 5-30 smaller than the average angular momentum of the baryons in the whole halo. Such low angular momentum originates from both segregation and effective cancellation when the gas flows to the centre of the halo along well-defined cold filamentary streams. These filaments penetrate deep inside the halo and connect to the bulge from multiple rapidly changing directions. Structures falling in along the filaments (satellite galaxies) or formed by gravitational instabilities triggered by the inflow (star clusters) further reduce the angular momentum of the gas in the bulge. Finally, the fraction of gas radially falling to the centre appears to increase with the mass of the halo; we argue that this is most likely due to an enhanced cancellation of angular momentum in rarer haloes which are fed by more isotropically distributed cold streams. Such an increasingly efficient funnelling of low angular momentum gas to the centre of very massive haloes at high redshift may account for the rapid pace at which the most massive supermassive black holes grow to reach observed masses around 10 M at an epoch when the Universe is barely 1 Gyr old. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.

Concepts in Thermal Physics 2nd Edition

, 2012

SJ Blundell, KM Blundell

A new formula for disc kinematics

Monthly Notices of the Royal Astronomical Society 419 (2012) 1546-1556

R Schönrich, J Binney

In a disc galaxy, the distribution of azimuthal components of velocity is very skew. In the past, this skewness has been modelled by superposed Gaussians. We use dynamical arguments to derive an analytic formula that can be fitted to observed velocity distributions, and validate it by fits to the velocities derived from a dynamically rigorous model, and to a sample of local stars with accurate space velocities. Our formula is much easier to use than a full distribution function. It has fewer parameters than a multi-Gaussian fit, and the best-fitting model parameters give insight into the underlying disc dynamics. In particular, once the azimuthal velocities of a sample have been successfully fitted, the apparatus provides a prediction for the corresponding distribution of radial velocitiesvR. An effective formula like ours is invaluable when fitting to data for stars at some distance from the Sun because it enables one to make proper allowance for the errors in distance and proper motion when determining the underlying disc kinematics. The derivation of our formula elucidates the way the horizontal and vertical motions are closely intertwined, and makes it evident that no stellar population can have a scaleheight and vertical velocity dispersions that are simultaneously independent of radius. We show that the oscillation of a star perpendicular to the Galactic plane modifies the effective potential in which the star moves radially in such a way that the more vertical energy a star has, the larger is the mean radius of its orbit. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.

A filamentation instability for streaming cosmic rays

Monthly Notices of the Royal Astronomical Society 419 (2012) 2433-2440

B Reville, AR Bell

We demonstrate that cosmic rays form filamentary structures in the precursors of supernova remnant shocks due to their self-generated magnetic fields. The cosmic ray filamentation results in the growth of a long-wavelength instability, and naturally couples the rapid non-linear amplification on small scales to larger length-scales. Hybrid magnetohydrodynamics-particle simulations are performed to confirm the effect. The resulting large-scale magnetic field may facilitate the scattering of high-energy cosmic rays as required to accelerate protons beyond the knee in the cosmic ray spectrum at supernova remnant shocks. Filamentation far upstream of the shock may also assist in the escape of cosmic rays from the accelerator. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.

Self-regulated growth of supermassive black holes by a dual jet/heating AGN feedback mechanism: methods, tests and implications for cosmological simulations

ArXiv (2011)

Y Dubois, J Devriendt, A Slyz, R Teyssier

We develop a new sub-grid model for the growth of supermassive Black Holes (BHs) and their associated Active Galactic Nuclei (AGN) feedback in hydrodynamical cosmological simulations. Assuming that BHs are created in the early stages of galaxy formation, they grow by mergers and accretion of gas at a Eddington-limited Bondi accretion rate. However this growth is regulated by AGN feedback which we model using two different modes: a quasar-heating mode when accretion rates onto the BHs are comparable to the Eddington rate, and a radio-jet mode at lower accretion rates. In other words, our feedback model deposits energy as a succession of thermal bursts and jet outflows depending on the properties of the gas surrounding the BHs. We assess the plausibility of such a model by comparing our results to observational measurements of the coevolution of BHs and their host galaxy properties, and check their robustness with respect to numerical resolution. We show that AGN feedback must be a crucial physical ingredient for the formation of massive galaxies as it appears to be the only physical mechanism able to efficiently prevent the accumulation of and/or expel cold gas out of halos/galaxies and significantly suppress star formation. Our model predicts that the relationship between BHs and their host galaxy mass evolves as a function of redshift, because of the vigorous accretion of cold material in the early Universe that drives Eddington-limited accretion onto BHs. Quasar activity is also enhanced at high redshift. However, as structures grow in mass and lose their cold material through star formation and efficient BH feedback ejection, the AGN activity in the low-redshift Universe becomes more and more dominated by the radio mode, which powers jets through the hot circum-galactic medium.

Subcritical fluctuations and suppression of turbulence in differentially rotating gyrokinetic plasmas


AA Schekochihin, EG Highcock, SC Cowley



SA Kassin, BJ Weiner, SM Faber, JP Gardner, CNA Willmer, AL Coil, MC Cooper, J Devriendt, AA Dutton, P Guhathakurta, DC Koo, AJ Metevier, KG Noeske, JR Primack

Gemini GMOS and WHT SAURON integral-field spectrograph observations of the AGN-driven outflow in NGC1266

Monthly Notices of the Royal Astronomical Society 426 (2012) 1574-1590

TA Davis, D Krajnović, RM McDermid, M Bureau, M Sarzi, K Nyland, K Alatalo, E Bayet, L Blitz, M Bois, F Bournaud, M Cappellari, A Crocker, RL Davies, PT de Zeeuw, P-A Duc, E Emsellem, S Khochfar, H Kuntschner, P-Y Lablanche, R Morganti, T Naab, T Oosterloo, N Scott, P Serra, A-M Weijmans, LM Young

We use the Spectrographic Areal Unit for Research on Optical Nebulae and Gemini Multi-Object Spectrograph integral-field spectrographs to observe the active galactic nucleus (AGN) powered outflow in NGC1266. This unusual galaxy is relatively nearby (D = 30Mpc), allowing us to investigate the process of AGN feedback in action. We present maps of the kinematics and line strengths of the ionized gas emission lines Hα, Hβ, [Oiii], [Oi], [Nii] and [Sii], and report on the detection of sodium D absorption. We use these tracers to explore the structure of the source, derive the ionized and atomic gas kinematics, and investigate the gas excitation and physical conditions. NGC1266 contains two ionized gas components along most lines of sight, tracing the ongoing outflow and a component closer to the galaxy systemic, the origin of which is unclear. This gas appears to be disturbed by a nascent AGN jet. We confirm that the outflow in NGC1266 is truly multiphase, containing radio plasma, atomic, molecular and ionized gas and X-ray emitting plasma. The outflow has velocities of up to ±900 km s -1 away from the systemic velocity and is very likely to remove significant amount of cold gas from the galaxy. The low-ionization nuclear emission region-like line emission in NGC1266 is extended, and it likely arises from fast shocks caused by the interaction of the radio jet with the interstellar medium. These shocks have velocities of up to 800 km s -1, which match well with the observed velocity of the outflow. Sodium D equivalent width profiles are used to set constraints on the size and orientation of the outflow. The ionized gas morphology correlates with the nascent radio jets observed in 1.4 and 5 GHz continuum emission, supporting the suggestion that an AGN jet is providing the energy required to drive the outflow. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.

Dynamical models of the Galaxy


PJ McMillan

Accretion by the Galaxy

ArXiv (2011)

J Binney, F Fraternali

Cosmology requires at least half of the baryons in the Universe to be in the intergalactic medium, much of which is believed to form hot coronae around galaxies. Star-forming galaxies must be accreting from their coronae. HI observations of external galaxies show that they have HI halos associated with star formation. These halos are naturally modelled as ensembles of clouds driven up by supernova bubbles. These models can fit the data successfully only if clouds exchange mass and momentum with the corona. As a cloud orbits, it is ablated and forms a turbulent wake where cold high-metallicity gas mixes with hot coronal gas causing the prompt cooling of the latter. As a consequence the total mass of HI increases. This model has recently been used to model the Leiden-Argentina-Bonn survey of Galactic HI. The values of the model's parameters that are required to model NGC 891, NGC 2403 and our Galaxy show a remarkable degree of consistency, despite the very different natures of the two external galaxies and the dramatic difference in the nature of the data for our Galaxy and the external galaxies. The parameter values are also consistent with hydrodynamical simulations of the ablation of individual clouds. The model predicts that a galaxy that loses its cool-gas disc for instance through a major merger cannot reform it from its corona; it can return to steady star formation only if it can capture a large body of cool gas, for example by accreting a gas-rich dwarf. Thus the model explains how major mergers can make galaxies "red and dead."

Molecular Dynamics Simulations for the Shear Viscosity of the One-Component Plasma


JP Mithen, J Daligault, G Gregori