Optimizing stellarators for large flows


I Calvo, FI Parra, J Arturo Alonso, J Luis Velasco

Towards a more realistic population of bright spiral galaxies in cosmological simulations

Monthly Notices of the Royal Astronomical Society 434 (2013) 3142-3164

M Aumer, SDM White, T Naab, C Scannapieco

We present an update to the multiphase smoothed particle hydrodynamics galaxy formation code by Scannapieco et al. We include a more elaborate treatment of the production of metals, cooling rates based on individual element abundances and a scheme for the turbulent diffusion of metals. Our supernova feedback model now transfers energy to the interstellar medium (ISM) in kinetic and thermal form, and we include a prescription for the effects of radiation pressure from massive young stars on the ISM. We calibrate our new code on the well-studied Aquarius haloes and then use it to simulate a sample of 16 galaxies with halo masses between 1 × 1011 and 3 × 1012Modot. In general, the stellar masses of the sample agree well with the stellar mass to halo mass relation inferred from abundance matching techniques for redshifts z = 0-4. There is however a tendency to overproduce stars at z > 4 and to underproduce them at z < 0.5 in the least massive haloes. Overly high star formation rates (SFRs) at z < 1 for the most massive haloes are likely connected to the lack of active galactic nuclei feedback in our model. The simulated sample also shows reasonable agreement with observed SFRs, sizes, gas fractions and gas-phase metallicities at z = 0-3. Remaining discrepancies can be connected to deviations from predictions for star formation histories from abundance matching. At z = 0, the model galaxies show realistic morphologies, stellar surface density profiles, circular velocity curves and stellar metallicities, but overly flat metallicity gradients. 15 out of 16 of our galaxies contain disc components with kinematic disc fraction ranging between 15 and 65 per cent. The disc fraction depends on the time of the last destructive merger or misaligned infall event. Considering the remaining shortcomings of our simulations we conclude that even higher kinematic disc fractions may be possible for λ cold dark matter haloes with quiet merger histories, such as the Aquarius haloes. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Intrinsic rotation driven by non-Maxwellian equilibria in tokamak plasmas

ArXiv (0)

M Barnes, FI Parra, JP Lee, EA Belli, MFF Nave, AE White

The effect of small deviations from a Maxwellian equilibrium on turbulent momentum transport in tokamak plasmas is considered. These non-Maxwellian features, arising from diamagnetic effects, introduce a strong dependence of the radial flux of co-current toroidal angular momentum on collisionality: As the plasma goes from nearly collisionless to weakly collisional, the flux reverses direction from radially inward to outward. This indicates a collisionality-dependent transition from peaked to hollow rotation profiles, consistent with experimental observations of intrinsic rotation.

Kinetic effects on a tokamak pedestal ion flow, ion heat transport and bootstrap current

Plasma Physics and Controlled Fusion 55 (2013)

PJ Catto, FI Parra, G Kagan, JB Parker, I Pusztai, M Landreman

We consider the effects of a finite radial electric field on ion orbits in a subsonic pedestal. Using a procedure that makes a clear distinction between a transit average and a flux surface average we are able to solve the kinetic equation to retain the modifications due to finite E→ × B→ drift orbit departures from flux surfaces. Our approach properly determines the velocity space localized, as well as the nonlocal, portion of the ion distribution function in the banana and plateau regimes in the small aspect ratio limit. The rapid variation of the poloidal ion flow coefficient and the electrostatic potential in the total energy modify previous banana regime evaluations of the ion flow, the bootstrap current, and the radial ion heat flux in a subsonic pedestal. In the plateau regime, the rapid variation of the poloidal flow coefficient alters earlier results for the ion flow and bootstrap current, while leaving the ion heat flux unchanged since the rapid poloidal variation of the total energy was properly retained. © 2013 IOP Publishing Ltd.

Idealized models for galactic disc formation and evolution in 'realistic' ΛCDM haloes

Monthly Notices of the Royal Astronomical Society 428 (2013) 1055-1076

M Aumer, SDM White

We study the dynamics of galactic disc formation and evolution in 'realistic'Λcold darkmatter haloes with idealized baryonic initial conditions. We add rotating spheres of hot gas at z = 1.3 to two fully cosmological dark-matter-only halo (re)simulations. The gas cools according to an artificial and adjustable cooling function to form a rotationally supported galaxy. The simulations evolve in the full cosmological context until z=0.We vary the angular momentum and density profiles of the initial gas sphere, the cooling time and the orientation of the angular momentum vector to study the effects on the formation and evolution of the disc. The final discs show exponential radial and (double)-exponential vertical stellar density profiles, and stellar velocity dispersions that increase with age of the stars, as in real disc galaxies. The slower the cooling/accretion processes, the higher the kinematic disc-to-bulge (D/B) ratio of the resulting system. We find that the initial orientation of the baryonic angular momentum with respect to the halo has a major effect on the resulting D/B. The most stable systems result from orientations parallel to the halo minor axis. Despite the spherical and coherently rotating initial gas distribution, the orientation of the central disc and of the outer gas components, and the relative angle between the components can all change by more than 90{ring operator} over several billion years. Initial orientations perpendicular to the major axis tend to align with the minor axis during their evolution, but the sign of the spin can have a strong effect. Discs can form from initial conditions oriented parallel to the major axis, but there is often strong misalignment between inner and outer material. The more the orientation of the baryonic angular momentum changes during the evolution, the lower the final D/B. The behaviour varies strongly from halo to halo. Even our very simple initial conditions can lead to strong bars, dominant bulges, massive, misaligned rings and counter-rotating components. We discuss how our results may relate to the failure or success of fully cosmological disc formation simulations. © 2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulations

PHYSICS OF PLASMAS 20 (2013) ARTN 056106

AE White, NT Howard, M Greenwald, ML Reinke, C Sung, S Baek, M Barnes, J Candy, A Dominguez, D Ernst, C Gao, AE Hubbard, JW Hughes, Y Lin, D Mikkelsen, F Parra, M Porkolab, JE Rice, J Walk, SJ Wukitch, AC-M Team

Corrigendum to “AstroGK: Astrophysical gyrokinetics code” [J. Comput. Phys. 229 (2010) 9347–9372]

Journal of Computational Physics 245 (2013) C

R Numata, GG Howes, T Tatsuno, M Barnes, W Dorland

Linear structures in the core of the Coma cluster of galaxies

Science 341 (2013) 1365-1368

JS Sanders, AC Fabian, E Churazov, AA Schekochihin, A Simionescu, SA Walker, N Werner

The hot x-ray-emitting plasma in galaxy clusters is predicted to have turbulent motion, which can contribute around 10% of the cluster's central energy density. We report deep Chandra X-ray Observatory observations of the Coma cluster core, showing the presence of quasi-linear high-density arms spanning 150 kiloparsecs, consisting of low-entropy material that was probably stripped from merging subclusters. Two appear to be connected with a subgroup of galaxies at a 650-kiloparsec radius that is merging into the cluster, implying coherence over several hundred million years. Such a long lifetime implies that strong isotropic turbulence and conduction are suppressed in the core, despite the unrelaxed state of the cluster. Magnetic fields are presumably responsible. The structures seen in Coma present insight into the past billion years of subcluster merger activity.

A new code for orbit analysis and Schwarzschild modelling of triaxial stellar systems

Monthly Notices of the Royal Astronomical Society 434 (2013) 3174-3195

E Vasiliev

We review the methods used to study the orbital structure and chaotic properties of various galactic models and to construct self-consistent equilibrium solutions by Schwarzschild's orbit superposition technique. These methods are implemented in a new publicly available software tool, SMILE, which is intended to be a convenient and interactive instrument for studying a variety of 2D and 3D models, including arbitrary potentials represented by a basis-set expansion, a spherical-harmonic expansion with coefficients being smooth functions of radius (splines) or a set of fixed point masses. We also propose two new variants of Schwarzschild modelling, in which the density of each orbit is represented by the coefficients of the basis-set or spline spherical-harmonic expansion, and the orbit weights are assigned in such a way as to reproduce the coefficients of the underlying density model. We explore the accuracy of these general-purpose potential expansions and show that they may be efficiently used to approximate a wide range of analytic density models and serve as smooth representations of discrete particle sets (e.g. snapshots from an N-body simulation), for instance, for the purpose of orbit analysis of the snapshot. For the variants of Schwarzschild modelling, we use two test cases - a triaxial Dehnen model containing a central black hole and a model re-created from an N-body snapshot obtained by a cold collapse. These tests demonstrate that all modelling approaches are capable of creating equilibrium models. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

The wobbly Galaxy: Kinematics north and south with RAVE red-clump giants

Monthly Notices of the Royal Astronomical Society 436 (2013) 101-121

MEK Williams, M Steinmetz, J Binney, A Siebert, H Enke, B Famaey, I Minchev, RS de Jong, C Boeche, KC Freeman, O Bienaymé, J Bland-Hawthorn, BK Gibson, GF Gilmore, EK Grebel, A Helmi, G Kordopatis, U Munari, JF Navarro, QA Parker, W Reid, GM Seabroke, S Sharma, A Siviero, FG Watson, RFG Wyse, T Zwitter

TheRAdialVelocity Experiment survey, combined with proper motions and distance estimates, can be used to study in detail stellar kinematics in the extended solar neighbourhood (solar suburb). Using 72 365 red-clump stars, we examine the mean velocity components in 3D between 6 < R < 10 kpc and -2 < Z < 2 kpc, concentrating on north-south differences. Simple parametric fits to the (R, Z) trends for Vφ and the velocity dispersions are presented. We confirm the recently discovered gradient in mean Galactocentric radial velocity, VR, finding that the gradient is marked below the plane (δ(VR)/δR=-8 kms-1 kpc-1 for Z<0, vanishing to zero above the plane), with a Z gradient thus also present. The vertical velocity, VZ, also shows clear, large-amplitude (|VZ| = 17 km s-1) structure, with indications of a rarefaction- compression pattern, suggestive of wave-like behaviour. We perform a rigorous error analysis, tracing sources of both systematic and random errors. We confirm the north-south differences in VR and VZ along the line of sight, with the VR estimated independent of the proper motions. The complex three-dimensional structure of velocity space presents challenges for future modelling of the Galactic disc, with the Galactic bar, spiral arms and excitation of wave-like structures all probably playing a role. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Correlations at large scales and the onset of turbulence in the fast solar WIND

Astrophysical Journal 778 (2013)

RT Wicks, DA Roberts, A Mallet, AA Schekochihin, TS Horbury, CHK Chen

We show that the scaling of structure functions of magnetic and velocity fields in a mostly highly Alfvénic fast solar wind stream depends strongly on the joint distribution of the dimensionless measures of cross helicity and residual energy. Already at very low frequencies, fluctuations that are both more balanced (cross helicity ∼0) and equipartitioned (residual energy ∼0) have steep structure functions reminiscent of "turbulent" scalings usually associated with the inertial range. Fluctuations that are magnetically dominated (residual energy ∼-1), and so have closely anti-aligned Elsasser-field vectors, or are imbalanced (cross helicity ∼1), and so have closely aligned magnetic and velocity vectors, have wide "1/f" ranges typical of fast solar wind. We conclude that the strength of nonlinear interactions of individual fluctuations within a stream, diagnosed by the degree of correlation in direction and magnitude of magnetic and velocity fluctuations, determines the extent of the 1/f region observed, and thus the onset scale for the turbulent cascade. © 2013. The American Astronomical Society. All rights reserved.

Thermal instabilities in cooling galactic coronae: Fuelling star formation in galactic discs

Monthly Notices of the Royal Astronomical Society 434 (2013) 1849-1868

A Hobbs, J Read, C Power, D Cole

We investigate the means by which cold gas can accrete on to Milky Way mass galaxies from a hot corona of gas, using a new smoothed particle hydrodynamics code, 'SPHS'. We find that the 'cold clumps' seen in many classic SPH simulations in the literature are not present in our SPHS simulations. Instead, cold gas condenses from the halo along filaments that form at the intersection of supernovae-driven bubbles from previous phases of star formation. This positive feedback feeds cold gas to the galactic disc directly, fuelling further star formation. The resulting galaxies in the SPH and SPHS simulations differ greatly in their morphology, gas phase diagrams and stellar content. We show that the classic SPH cold clumps owe to a numerical thermal instability caused by an inability for cold gas to mix in the hot halo. The improved treatment of mixing in SPHS suppresses this instability leading to a dramatically different physical outcome. In our highest resolution SPHS simulation, we find that the cold filaments break up into bound, physically motivated clumps that form stars. The filaments are overdense by a factor of 10-100 compared to the surrounding gas, suggesting that the fragmentation results from a physical non-linear instability driven by the overdensity. This 'fragmenting filament' mode of disc growth has important implications for galaxy formation, in particular the role of star formation in bringing cold gas into disc galaxies. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

Powering of cool filaments in cluster cores by buoyant bubbles - I. Qualitative model

Monthly Notices of the Royal Astronomical Society 436 (2013) 526-530

E Churazov, M Ruszkowski, A Schekochihin

Cool-core clusters (e.g. Perseus or M87) often possess a network of bright gaseous filaments, observed in radio, infrared, optical and X-ray bands. We propose that these filaments are powered by the reconnection of the magnetic field in the wakes of buoyant bubbles. Active galactic nucleus (AGN)-inflated bubbles of relativistic plasma rise buoyantly in the cluster atmosphere, stretching and amplifying the field in the wake to values of β = 8πPgas/B2 ~ 1. The field lines in thewake have opposite directions and are forced together as the bubble motion stretches the filament. This setup bears strong similarity to the coronal loops on the Sun or to the Earth's magnetotail. The reconnection process naturally explains both the required level of local dissipation rate in filaments and the overall luminosity of filaments. The original source of power for the filaments is the potential energy of buoyant bubbles, inflated by the central AGN. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Overview of physics results from MAST towards ITER/DEMO and the MAST Upgrade

Nuclear Fusion 53 (2013)

H Meyer, IG Abel, RJ Akers, A Allan, SY Allan, LC Appel, O Asunta, M Barnes, NC Barratt, N Ben Ayed, JW Bradley, J Canik, P Cahyna, M Cecconello, CD Challis, IT Chapman, D Ciric, G Colyer, NJ Conway, M Cox, BJ Crowley, SC Cowley, G Cunningham, A Danilov, A Darke, MFM De Bock, G De Temmerman, RO Dendy, P Denner, D Dickinson, AY Dnestrovsky, Y Dnestrovsky, MD Driscoll, B Dudson, D Dunai, M Dunstan, P Dura, S Elmore, AR Field, G Fishpool, S Freethy, W Fundamenski, L Garzotti, YC Ghim, KJ Gibson, MP Gryaznevich, J Harrison, E Havlíčková, NC Hawkes, WW Heidbrink, TC Hender, E Highcock, D Higgins, P Hill, B Hnat, MJ Hole, J Horáček, DF Howell, K Imada, O Jones, E Kaveeva, D Keeling, A Kirk, M Kočan, RJ Lake, M Lehnen, HJ Leggate, Y Liang, MK Lilley, SW Lisgo, YQ Liu, B Lloyd, GP Maddison, J Mailloux, R Martin, GJ McArdle, KG McClements, B McMillan, C Michael, F Militello, P Molchanov, S Mordijck, T Morgan, AW Morris, DG Muir, E Nardon, V Naulin, G Naylor, AH Nielsen, MR O'Brien, T O'Gorman, S Pamela, FI Parra, A Patel, SD Pinches

New diagnostic, modelling and plant capability on the Mega Ampère Spherical Tokamak (MAST) have delivered important results in key areas for ITER/DEMO and the upcoming MAST Upgrade, a step towards future ST devices on the path to fusion currently under procurement. Micro-stability analysis of the pedestal highlights the potential roles of micro-tearing modes and kinetic ballooning modes for the pedestal formation. Mitigation of edge localized modes (ELM) using resonant magnetic perturbation has been demonstrated for toroidal mode numbers n = 3, 4, 6 with an ELM frequency increase by up to a factor of 9, compatible with pellet fuelling. The peak heat flux of mitigated and natural ELMs follows the same linear trend with ELM energy loss and the first ELM-resolved Ti measurements in the divertor region are shown. Measurements of flow shear and turbulence dynamics during L-H transitions show filaments erupting from the plasma edge whilst the full flow shear is still present. Off-axis neutral beam injection helps to strongly reduce the redistribution of fast-ions due to fishbone modes when compared to on-axis injection. Low-k ion-scale turbulence has been measured in L-mode and compared to global gyro-kinetic simulations. A statistical analysis of principal turbulence time scales shows them to be of comparable magnitude and reasonably correlated with turbulence decorrelation time. Te inside the island of a neoclassical tearing mode allow the analysis of the island evolution without assuming specific models for the heat flux. Other results include the discrepancy of the current profile evolution during the current ramp-up with solutions of the poloidal field diffusion equation, studies of the anomalous Doppler resonance compressional Alfvén eigenmodes, disruption mitigation studies and modelling of the new divertor design for MAST Upgrade. The novel 3D electron Bernstein synthetic imaging shows promising first data sensitive to the edge current profile and flows. © 2013 IAEA, Vienna.

The loss-cone problem in axisymmetric nuclei

Astrophysical Journal 774 (2013)

E Vasiliev, D Merritt

We consider the problem of consumption of stars by a supermassive black hole (SBH) at the center of an axisymmetric galaxy. Inside the SBH sphere of influence, motion of stars in the mean field is regular and can be described analytically in terms of three integrals of motion: the energy E, the z-component of angular momentum Lz, and the secular Hamiltonian H. There exist two classes of orbits, tubes and saucers; saucers occupy the low-angular-momentum parts of phase space and their fraction is proportional to the degree of flattening of the nucleus. Perturbations due to gravitational encounters lead to diffusion of stars in integral space, which can be described using the Fokker-Planck equation. We calculate the diffusion coefficients and solve this equation in the two-dimensional phase space (Lz, H), for various values of the capture radius and the degree of flattening. Capture rates are found to be modestly higher than in the spherical case, up to a factor of a few, and most captures take place from saucer orbits. We also carry out a set of collisional N-body simulations to confirm the predictions of the Fokker-Planck models. We discuss the implications of our results for rates of tidal disruption and capture in the Milky Way and external galaxies. © 2013. The American Astronomical Society. All rights reserved.

Multi-objective methods for determining optimal ventilation rates in dwellings


P Das, Z Chalabi, B Jones, J Milner, C Shrubsole, M Davies, I Hamilton, I Ridley, P Wilkinson



J Kos, T Zwitter, EK Grebel, O Bienayme, J Binney, J Bland-Hawthorn, KC Freeman, BK Gibson, G Gilmore, G Kordopatis, JF Navarro, Q Parker, WA Reid, G Seabroke, A Siebert, A Siviero, M Steinmetz, F Watson, RFG Wyse

Fast collisionless reconnection and electron heating in strongly magnetized plasmas

Physical Review Letters 111 (2013)

NF Loureiro, AA Schekochihin, A Zocco

Magnetic reconnection in strongly magnetized (low-beta), weakly collisional plasmas is investigated by using a novel fluid-kinetic model [Zocco and Schekochihin, Phys. Plasmas 18, 102309 (2011)] which retains nonisothermal electron kinetics. It is shown that electron heating via Landau damping (linear phase mixing) is the dominant dissipation mechanism. In time, electron heating occurs after the peak of the reconnection rate; in space, it is concentrated along the separatrices of the magnetic island. For sufficiently large systems, the peak reconnection rate is ≈0.2vABy,0, where v A is the Alfvén speed based on the reconnecting field B y,0. The island saturation width is the same as in magnetohydrodynamics models except for small systems, when it becomes comparable to the kinetic scales. © 2013 American Physical Society.



F Fraternali, A Marasco, F Marinacci, J Binney

Electron flow driven instability in finite beta plasmas

40th EPS Conference on Plasma Physics, EPS 2013 2 (2013) 1098-1101

I Pusztai, PJ Catto, FI Parra, M Barnes