Publications


Global gyrokinetic turbulence simulations of MAST plasmas

Plasma Physics and Controlled Fusion 54 (2012)

S Saarelma, G Colyer, AR Field, CM Roach, A Bottino, P Hill, B McMillan, A Peeters

Electrostatic gyrokinetic analyses are presented for an L-mode discharge with an internal transport barrier, from the spherical tokamak, MAST. Local and global microstability analysis finds similar linear growth rates for ion temperature gradient (ITG) driven modes. When the electron response is assumed to be adiabatic, growth rates are found to be lower than the experimental E×B flow shearing rate. Including kinetic electrons, without collisions, increases the ITG growth rates above the flow shearing rate, and these modes are found to be linearly unstable in the outer part of the plasma only. In global simulations the flow shear stabilization is found to be asymmetric with respect to the direction of the flow: there is a small destabilizing effect at low flow shear when the flow is in the co-direction. Global non-linear simulations with kinetic electrons and including the flow shear effects predict turbulent ion heat transport that is well above the neoclassical level in the region outside the internal transport barrier in this MAST plasma. In non-linear simulations we also find turbulence extending from the outer part of the plasma into the linearly stable core region. © 2012 IOP Publishing Ltd.


The ATLAS project - XII. Recovery of the mass-to-light ratio of simulated early-type barred galaxies with axisymmetric dynamical models

Monthly Notices of the Royal Astronomical Society 424 (2012) 1495-1521

P-Y Lablanche, E Emsellem, L Michel-Dansac, PT de Zeeuw, D Krajnović, H Kuntschner, M Cappellari, M Bureau, RL Davies, TA Davis, N Scott, F Bournaud, P-A Duc, K Alatalo, L Blitz, M Bois, S Khochfar, R Morganti, T Oosterloo, P Serra, RM McDermid, T Naab, M Sarzi, A-M Weijmans, LM Young

We investigate the accuracy in the recovery of the stellar dynamics of barred galaxies when using axisymmetric dynamical models. We do this by trying to recover the mass-to-light ratio (M/L) and the anisotropy of realistic galaxy simulations using the Jeans Anisotropic Multi-Gaussian Expansion (JAM) modelling method. However, given that the biases we find are mostly due to an application of an axisymmetric modelling algorithm to a non-axisymmetric system and in particular to inaccuracies in the deprojected mass model, our results are relevant for general axisymmetric modelling methods. We run N-body collisionless simulations to build a library with various luminosity distribution, constructed to mimic real individual galaxies, with realistic anisotropy. The final result of our evolved library of simulations contains both barred and unbarred galaxies. The JAM method assumes an axisymmetric mass distribution, and we adopt a spatially constant M/L and anisotropy distributions. The models are fitted to two-dimensional maps of the second velocity moments of the simulations for various viewing angles [position angle (PA) of the bar and inclination of the galaxy]. We find that the inclination is generally well recovered by the JAM models, for both barred and unbarred simulations. For unbarred simulations the M/L is also accurately recovered, with negligible median bias and with a maximum one of just Δ(M/L) < 1.5 per cent when the galaxy is not too close to face on. At very low inclinations the M/L can be significantly overestimated (9 per cent in our tests, but errors can be larger for very face-on views). This is in agreement with previous studies. For barred simulations the M/L is on average (when PA = 45°) essentially unbiased, but we measure an over/underestimation of up to Δ(M/L) = 15 per cent in our tests. The sign of the M/L bias depends on the PA of the bar as expected: overestimation occurs when the bar is closer to end-on, due to the increased stellar motion along the line-of-sight, and underestimation otherwise. For unbarred simulations, the JAM models are able to recover the mean value of the anisotropy with bias, within the region constrained by the kinematics. However when a bar is present, or for nearly face-on models, the recovered anisotropy varies wildly, with biases up to Δβ ≈ 0.3. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.


Angular momentum transfer to a Milky Way disk at high redshift

ArXiv (2012)

H Tillson, J Devriendt, A Slyz, L Miller, C Pichon

An Adaptive Mesh Refinement cosmological resimulation is analyzed in order to test whether filamentary flows of cold gas are responsible for the build-up of angular momentum within a Milky Way like disk at z>=3. A set of algorithms is presented that takes advantage of the high spatial resolution of the simulation (12 pc) to identify: (i) the central gas disk and its plane of orientation; (ii) the complex individual filament trajectories that connect to the disk, and; (iii) the infalling satellites. The results show that two filaments at z>5.5, which later merge to form a single filament at z<4, drive the angular momentum and mass budget of the disk throughout its evolution, whereas luminous satellite mergers make negligible fractional contributions. Combined with the ubiquitous presence of such filaments in all large-scale cosmological simulations that include hydrodynamics, these findings provide strong quantitative evidence that the growth of thin disks in haloes with masses below 10^{12} M_{sun}, which host the vast majority of galaxies, is supported via inflowing streams of cold gas at intermediate and high redshifts.


The SAURON project - XXI. The spatially resolved UV-line strength relations of early-type galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 423 (2012) 1921-1939

H Jeong, SK Yi, M Bureau, RL Davies, R Bacon, M Cappellari, PT de Zeeuw, E Emsellem, J Falcon-Barroso, D Krajnovic, H Kuntschner, RM McDermid, RF Peletier, M Sarzi, RCE van den Bosch, G van de Ven


Subcritical fluctuations and suppression of turbulence in differentially rotating gyrokinetic plasmas

PLASMA PHYSICS AND CONTROLLED FUSION 54 (2012) ARTN 055011

AA Schekochihin, EG Highcock, SC Cowley


Molecular Dynamics Simulations for the Shear Viscosity of the One-Component Plasma

CONTRIBUTIONS TO PLASMA PHYSICS 52 (2012) 58-61

JP Mithen, J Daligault, G Gregori


A study of fast electron energy transport in relativistically intense laser-plasma interactions with large density scalelengths

Physics of Plasmas 19 (2012)

RHH Scott, CP Ridgers, SJ Rose, PA Norreys, KL Lancaster, RMGM Trines, AR Bell, M Tzoufras, F Perez, SD Baton, JJ Santos, P Nicolai, S Hulin, JR Davies

A systematic experimental and computational investigation of the effects of three well characterized density scalelengths on fast electron energy transport in ultra-intense laser-solid interactions has been performed. Experimental evidence is presented which shows that, when the density scalelength is sufficiently large, the fast electron beam entering the solid-density plasma is best described by two distinct populations: those accelerated within the coronal plasma (the fast electron pre-beam) and those accelerated near or at the critical density surface (the fast electron main-beam). The former has considerably lower divergence and higher temperature than that of the main-beam with a half-angle of ∼20°. It contains up to 30% of the total fast electron energy absorbed into the target. The number, kinetic energy, and total energy of the fast electrons in the pre-beam are increased by an increase in density scalelength. With larger density scalelengths, the fast electrons heat a smaller cross sectional area of the target, causing the thinnest targets to reach significantly higher rear surface temperatures. Modelling indicates that the enhanced fast electron pre-beam associated with the large density scalelength interaction generates a magnetic field within the target of sufficient magnitude to partially collimate the subsequent, more divergent, fast electron main-beam. © 2012 American Institute of Physics.


Lyman-alpha emission properties of simulated galaxies: interstellar medium structure and inclination effects

ArXiv (2012)

A Verhamme, Y Dubois, J Blaizot, T Garel, R Bacon, J Devriendt, B Guiderdoni, A Slyz

[abridged] Aims. The aim of this paper is to assess the impact of the interstellar medium (ISM) physics on Lyman-alpha (Lya) radiation transfer and to quantify how galaxy orientation with respect to the line of sight alters observational signatures. Methods. We compare the results of Lya radiation transfer calculations through the ISM of a couple of idealized galaxy simulations with different ISM models. Results. First, the small-scale structuration of the ISM plays a determinant role in shaping a galaxys Lya properties.The artificially warm, and hence smooth, ISM of G1 yields an escape fraction of 50 percent at the Lya line center, and produces symmetrical double-peak profiles. On the contrary, in G2, most young stars are embedded in thick star-forming clouds, and the result is a 10 times lower escape fraction. G2 also displays a stronger outflowing velocity field, which favors the escape of red-shifted photons, resulting in an asymmetric Lya line. Second, the Lya properties of G2 strongly depend on the inclination at which it is observed: From edge-on to face-on, the line goes from a double-peak profile with an equivalent width of -5 Angstrom to a 15 times more luminous red-shifted asymmetric line with EW 90 Angstrom. Conclusions. Lya radiation transfer calculations can only lead to realistic properties in simulations where galaxies are resolved into giant molecular clouds, putting these calculations out of reach of current large scale cosmological simulations. Finally, we find inclination effects to be much stronger for Lya photons than for continuum radiation. This could potentially introduce severe biases in the selection function of narrow-band Lya emitter surveys, which could indeed miss a significant fraction of the high-z galaxy population.


Laser absorption in relativistically underdense plasmas by synchrotron radiation

Physical Review Letters 109 (2012) 245006

CS Brady, CP Ridgers, TD Arber, AR Bell, JG Kirk


Testing quantum mechanics in non-Minkowski space-time with high power lasers and 4 th generation light sources

Scientific Reports 2 (2012)

BJB Crowley, CD Murphy, JS Wark, G Gregori, R Bingham, PA Norreys, RG Evans, SJ Rose, DO Gericke, OL Landen, T Tschentscher, CH-T Wang

A common misperception of quantum gravity is that it requires accessing energies up to the Planck scale of 10 GeV, which is unattainable from any conceivable particle collider. Thanks to the development of ultra-high intensity optical lasers, very large accelerations can be now the reached at their focal spot, thus mimicking, by virtue of the equivalence principle, a non Minkowski space-time. Here we derive a semiclassical extension of quantum mechanics that applies to different metrics, but under the assumption of weak gravity. We use our results to show that Thomson scattering of photons by uniformly accelerated electrons predicts an observable effect depending upon acceleration and local metric. In the laboratory frame, a broadening of the Thomson scattered x ray light from a fourth generation light source can be used to detect the modification of the metric associated to electrons accelerated in the field of a high power optical laser.


Laboratory investigations on the origins of cosmic rays

Plasma Physics and Controlled Fusion 54 (2012)

Y Kuramitsu, Y Sakawa, T Morita, K Mima, H Azechi, T Moritaka, T Sano, H Takabe, T Ide, H Tanji, S Dono, N Nakanii, R Kodama, KA Tanaka, K Nishio, H Aoki, CD Gregory, JN Waugh, N Woolsey, A Dizière, A Pelka, A Ravasio, B Loupias, M Koenig, SA Pikuz, YT Li, Y Zhang, X Liu, JY Zhong, J Zhang, G Gregori, K Kondo, Y Mori, Y Kitagawa, E Miura, Y Matsumoto, A Mizuta, N Ohnishi, M Hoshino

We report our recent efforts on the experimental investigations related to the origins of cosmic rays. The origins of cosmic rays are long standing open issues in astrophysics. The galactic and extragalactic cosmic rays are considered to be accelerated in non-relativistic and relativistic collisionless shocks in the universe, respectively. However, the acceleration and transport processes of the cosmic rays are not well understood, and how the collisionless shocks are created is still under investigation. Recent high-power and high-intensity laser technologies allow us to simulate astrophysical phenomena in laboratories. We present our experimental results of collisionless shock formations in laser-produced plasmas. © 2012 IOP Publishing Ltd.


Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves.

Nature 481 (2012) 480-483

G Gregori, A Ravasio, CD Murphy, K Schaar, A Baird, AR Bell, A Benuzzi-Mounaix, R Bingham, C Constantin, RP Drake, M Edwards, ET Everson, CD Gregory, Y Kuramitsu, W Lau, J Mithen, C Niemann, HS Park, BA Remington, B Reville, AP Robinson, DD Ryutov, Y Sakawa, S Yang, NC Woolsey, M Koenig, F Miniati

The standard model for the origin of galactic magnetic fields is through the amplification of seed fields via dynamo or turbulent processes to the level consistent with present observations. Although other mechanisms may also operate, currents from misaligned pressure and temperature gradients (the Biermann battery process) inevitably accompany the formation of galaxies in the absence of a primordial field. Driven by geometrical asymmetries in shocks associated with the collapse of protogalactic structures, the Biermann battery is believed to generate tiny seed fields to a level of about 10(-21) gauss (refs 7, 8). With the advent of high-power laser systems in the past two decades, a new area of research has opened in which, using simple scaling relations, astrophysical environments can effectively be reproduced in the laboratory. Here we report the results of an experiment that produced seed magnetic fields by the Biermann battery effect. We show that these results can be scaled to the intergalactic medium, where turbulence, acting on timescales of around 700 million years, can amplify the seed fields sufficiently to affect galaxy evolution.


Inverse Compton X-ray halos around high-z radio galaxies: A feedback mechanism powered by far-infrared starbursts or the CMB?

ArXiv (2012)

I Smail, KM Blundell, BD Lehmer, DM Alexander

We report the detection of extended X-ray emission around two powerful high-z radio galaxies (HzRGs) at z~3.6 (4C03.24 & 4C19.71) and use these to investigate the origin of extended, Inverse Compton (IC) powered X-ray halos at high z. The halos have X-ray luminosities of Lx~3e44 erg/s and sizes of ~60kpc. Their morphologies are broadly similar to the ~60-kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either CMB or FIR photons from the dust-obscured starbursts in these galaxies. These observations double the number of z>3 HzRGs with X-ray detected IC halos. We compare the IC X-ray to radio luminosity ratios for these new detections to the two previously detected z~3.8 HzRGs. Given the similar redshifts, we would expect comparable X-ray IC luminosities if CMB mm photons are the seed field for the IC emission. Instead the two z~3.6 HzRGs, which are ~4x fainter in the FIR, also have ~4x fainter X-ray IC emission. Including a further six z>2 radio sources with IC X-ray halos from the literature, we suggest that in the more compact (lobe sizes <100-200kpc), majority of radio sources, the bulk of the IC emission may be driven by scattering of locally produced FIR photons from luminous, dust-obscured starbursts within these galaxies, rather than CMB photons. The resulting X-ray emission can ionise the gas on ~100-200-kpc scales around these systems and thus form their extended Ly-alpha emission line halos. The starburst and AGN activity in these galaxies are thus combining to produce an effective and wide-spread "feedback" process, acting on the long-term gas reservoir for the galaxy. If episodic radio activity and co-eval starbursts are common in massive, high-z galaxies, then this IC-feedback mechanism may affect the star-formation histories of massive galaxies. [Abridged]


Actions for axisymmetric potentials

ArXiv (2012)

J Binney

We give an algorithm for the economical calculation of angles and actions for stars in axisymmetric potentials. We test the algorithm by integrating orbits in a realistic model of the Galactic potential, and find that, even for orbits characteristic of thick-disc stars, the errors in the actions are typically smaller than 2 percent. We describe a scheme for obtaining actions by interpolation on tabulated values that significantly accelerates the process of calculating observables quantities, such as density and velocity moments, from a distribution function.


Measurement of radiative shock properties by X-ray Thomson scattering

Physical Review Letters 108 (2012)

AJ Visco, RP Drake, MJ Grosskopf, SH Glenzer, T Döppner, G Gregori, DH Froula

X-ray Thomson scattering has enabled us to measure the temperature of a shocked layer, produced in the laboratory, that is relevant to shocks emerging from supernovas. High energy lasers are used to create a shock in argon gas which is probed by x-ray scattering. The scattered, inelastic Compton feature allows inference of the electron temperature. It is measured to be 34 eV in the radiative precursor and ∼60eV near the shock. Comparison of energy fluxes implied by the data demonstrates that the shock wave is strongly radiative. © 2012 American Physical Society.


The ATLAS project - XI. Dense molecular gas properties of CO-luminous early-type galaxies

Monthly Notices of the Royal Astronomical Society 421 (2012) 1298-1314

A Crocker, M Krips, M Bureau, TA Davis, E Bayet, M Cappellari, RL Davies, LM Young, K Alatalo, L Blitz, M Bois, PT de Zeeuw, E Emsellem, D Krajnović, P-Y Lablanche, F Bournaud, P-A Duc, S Khochfar, H Kuntschner, RM Mcdermid, R Morganti, T Oosterloo, P Serra, T Naab, M Sarzi, N Scott, A-M Weijmans

Surveying 18 CO-bright galaxies from the ATLAS early-type galaxy sample with the Institut de Radio Astronomie Millimétrique (IRAM) 30-m telescope, we detect CO(1-0) and CO(2-1) in all 18 galaxies, HCN(1-0) in 12/18 and HCO (1-0) in 10/18. We find that the line ratios CO(1-0)/ CO(1-0) and CO(1-0)/HCN(1-0) are clearly correlated with several galaxy properties: total stellar mass, luminosity-weighted mean stellar age, molecular-to-atomic gas ratio, dust temperature and dust morphology. We suggest that these correlations are primarily governed by the optical depth in the CO lines; interacting, accreting and/or starbursting early-type galaxies have more optically thin molecular gas while those with settled dust and gas discs host optically thick molecular gas. The ranges of the integrated line intensity ratios generally overlap with those of spirals, although we note some outliers in the CO(1-0)/ CO(1-0), CO(2-1)/ CO(2-1) and HCN/HCO (1-0) ratios. In particular, three galaxies are found to have very low CO(1-0)/ CO(1-0) and CO(2-1)/ CO(2-1) ratios. Such low ratios may signal particularly stable molecular gas which creates stars less efficiently than 'normal' (i.e. below Schmidt-Kennicutt prediction), consistent with the low dust temperatures seen in these galaxies. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.


Weak Alfvén-wave turbulence revisited.

Phys Rev E Stat Nonlin Soft Matter Phys 85 (2012) 036406-

AA Schekochihin, SV Nazarenko, TA Yousef

Weak Alfvénic turbulence in a periodic domain is considered as a mixed state of Alfvén waves interacting with the two-dimensional (2D) condensate. Unlike in standard treatments, no spectral continuity between the two is assumed, and, indeed, none is found. If the 2D modes are not directly forced, k(-2) and k(-1) spectra are found for the Alfvén waves and the 2D modes, respectively, with the latter less energetic than the former. The wave number at which their energies become comparable marks the transition to strong turbulence. For imbalanced energy injection, the spectra are similar, and the Elsasser ratio scales as the ratio of the energy fluxes in the counterpropagating Alfvén waves. If the 2D modes are forced, a 2D inverse cascade dominates the dynamics at the largest scales, but at small enough scales, the same weak and then strong regimes as described above are achieved.


Plasma switch as a temporal overlap tool for pump-probe experiments at FEL facilities

Journal of Instrumentation 7 (2012)

M Harmand, S Düsterer, T Laarmann, A Przystawik, H Redlin, M Schulz, F Tavella, S Toleikis, D Murphy, D Brown, G Gregori, T White, M Cammarata, D Fritz, J Lee, H Lemke, T Döppner, H Glenzer, E Förster, V Hilbert, U Zastrau, J Gaudin, T Tschentscher, S Göde, K-H Meiwes-Broer, S Skruszewicz, D Hochhaus, P Neumayer, E Galtier, A Moinard

We have developed an easy-to-use and reliable timing tool to determine the arrival time of an optical laser and a free electron laser (FEL) pulses within the jitter limitation. This timing tool can be used from XUV to X-rays and exploits high FELs intensities. It uses a shadowgraph technique where we optically (at 800 nm) image a plasma created by an intense XUV or X-ray FEL pulse on a transparent sample (glass slide) directly placed at the pump - probe sample position. It is based on the physical principle that the optical properties of the material are drastically changed when its free electron density reaches the critical density. At this point the excited glass sample becomes opaque to the optical laser pulse. The ultra-short and intense XUV or X-ray FEL pulse ensures that a critical electron density can be reached via photoionization and subsequent collisional ionization within the XUV or X-ray FEL pulse duration or even faster. This technique allows to determine the relative arrival time between the optical laser and the FEL pulses in only few single shots with an accuracy mainly limited by the optical laser pulse duration and the jitter between the FEL and the optical laser. Considering the major interest in pump-probe experiments at FEL facilities in general, such a femtosecond resolution timing tool is of utmost importance. © 2012 IOP Publishing Ltd and Sissa Medialab srl.


Enhancing and inhibiting star formation: High-resolution simulation studies of the impact of cold accretion, mergers and feedback on individual massive galaxies

Proceedings of the International Astronomical Union 8 (2012) 13-16

LC Powell, S Khochfar, F Bournaud, D Chapon, R Teyssier, J Devriendt, A Slyz, V Gaibler

The quest for a better understanding of the evolution of massive galaxies can be broadly summarised with 2 questions: how did they build up their large (stellar) masses and what eventually quenched their star formation (SF)? To tackle these questions, we use high-resolution ramses simulations (Teyssier 2002) to study several aspects of the detailed interplay between accretion (mergers and cold flows), SF and feedback in individual galaxies. We examine SF in major mergers; a process crucial to stellar mass assembly. We explore whether the merger-induced, clustered SF is as important a mechanism in average mergers, as it is in extreme systems like the Antennae. We find that interaction-induced turbulence drives up the velocity dispersion, and that there is a correlated rise in SFR in all our simulated mergers as the density pdf evolves to have an excess of very dense gas. Next, we introduce a new study into whether mechanical jet feedback can impact upon the ability of hot gas haloes to provide a supply of fuel for SF during mergers and in their remnants. Finally, we briefly review our recent study, in which we examine the effect of supernova (SN) feedback on galaxies accreting via the previously overlooked cold-mode, by resimulating a stream-fed galaxy at z ~ 9. A far-reaching galactic wind results yet it cannot suppress the cold, filamentary accretion or eject significant mass in order to reduce the SFR, suggesting that SN feedback may not be as effective as is often assumed. © 2013 International Astronomical Union.


The Radius of Baryonic Collapse in Disc Galaxy Formation

ArXiv (2012)

SA Kassin, J Devriendt, SM Fall, RSD Jong, B Allgood, JR Primack

In the standard picture of disc galaxy formation, baryons and dark matter receive the same tidal torques, and therefore approximately the same initial specific angular momentum. However, observations indicate that disc galaxies typically have only about half as much specific angular momentum as their dark matter haloes. We argue this does not necessarily imply that baryons lose this much specific angular momentum as they form galaxies. It may instead indicate that galaxies are most directly related to the inner regions of their host haloes, as may be expected in a scenario where baryons in the inner parts of haloes collapse first. A limiting case is examined under the idealised assumption of perfect angular momentum conservation. Namely, we determine the density contrast Delta, with respect to the critical density of the Universe, by which dark matter haloes need to be defined in order to have the same average specific angular momentum as the galaxies they host. Under the assumption that galaxies are related to haloes via their characteristic rotation velocities, the necessary Delta is ~600. This Delta corresponds to an average halo radius and mass which are ~60% and ~75%, respectively, of the virial values (i.e., for Delta = 200). We refer to this radius as the radius of baryonic collapse R_BC, since if specific angular momentum is conserved perfectly, baryons would come from within it. It is not likely a simple step function due to the complex gastrophysics involved, therefore we regard it as an effective radius. In summary, the difference between the predicted initial and the observed final specific angular momentum of galaxies, which is conventionally attributed solely to angular momentum loss, can more naturally be explained by a preference for collapse of baryons within R_BC, with possibly some later angular momentum transfer.