Publications


Decadal climate prediction with the ECMWF coupled forecast system: Impact of ocean observations. ECMWF Tech Memo.

(2010) 633

FJ Doblas-Reyes, MA Balmaseda, A Weisheimer, TN Palmer


Forecast quality assessment of the ENSEMBLES seasonal-to-decadal Stream 2 hindcasts. ECMWF Tech Memo.

ECMWF (2010) 621

FJ Doblas-Reyes, A Weisheimer, TN Palmer, JM Murphy, D Smith


Model uncertainty in seasonal to decadal forecasting - insight from the ENSEMBLES project.

ECMWF Newsletter ECMWF 122 (2010) 21-26

A Weisheimer, FJ Doblas-Reyes, TN Palmer


Toward a new generation of world climate research and computing facilities

Bulletin of the American Meteorological Society 91 (2010) 1407-1412

J Shukla, TN Palmer, R Hagedorn, B Hoskins, J Kinter, J Marotzke, M Miller, J Slingo

National climate research facilities must be enhanced and dedicated multi-national facilities should be established to accelerate progress in understanding and predicting regional climate change. In addition to the merits of running climate models at a resolution comparable with that of NWP models, the continual confrontation of an NWP model with observations can provide important constraints when the same model is used for much longer-time-scale climate predictions. Short-range forecast models give encouraging results using grid lengths of close to 1 km, without parameterizing deep convection. Prediction uncertainty, a key variable can be estimated by making an ensemble of forecasts with varying initial conditions, model equations, and other input fields such as greenhouse gas concentrations. The new generation of models will yield improved statistics of daily weather and, therefore, better predictions of regional climate variations on seasonal time scales.


EXTENDED-RANGE PROBABILISTIC FORECASTS OF GANGES AND BRAHMAPUTRA FLOODS IN BANGLADESH

BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY 91 (2010) 1493-U121

PJ Webster, J Jian, TM Hopson, CD Hoyos, PA Agudelo, H-R Chang, JA Curry, RL Grossman, TN Palmer, AR Subbiah


Is science fiction a genre for communicating scientific research? A case study in climate prediction

Bulletin of the American Meteorological Society 91 (2010) 1413-1415

TN Palmer

The author, T. N. Palmer describes a book by Isaac Asimov titled Nightfall, which describes a civilization's first encounter with darkness for thousands of years. The civilization inhabits the planet Lagash, which orbits one of six gravitationally-bound suns. Nightfall occurs during a total eclipse, when only one of the suns is above the horizon. Although in this sense climate change is inherently predictable, the author is not confirm whether how reliable the predictions of climate change are in practice. The first message of the story is that reliable predictions of regional climate change are crucially important to guide decisions on infrastructure investment for societies to adapt to future climate change. The second message of the story is that if current climate models can systematically misrepresent the regional effects of the annual cycle, they can also misrepresent the regional effects of climate change. One way to reduce these systematic deficiencies would be to simulate more of the climate system with the proper equations of motion.


Diagnosing the Origin of Extended-Range Forecast Errors

MONTHLY WEATHER REVIEW 138 (2010) 2434-2446

T Jung, MJ Miller, TN Palmer


Understanding the Anomalously Cold European Winter of 2005/06 Using Relaxation Experiments

MONTHLY WEATHER REVIEW 138 (2010) 3157-3174

T Jung, TN Palmer, MJ Rodwell, S Serrar


Future change in Southern Hemisphere summertime and wintertime atmospheric blockings simulated using a 20-km-mesh AGCM

GEOPHYSICAL RESEARCH LETTERS 37 (2010) ARTN L02803

M Matsueda, H Endo, R Mizuta


Impact of 2007 and 2008 Arctic ice anomalies on the atmospheric circulation: Implications for long-range predictions

QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY 136 (2010) 1655-1664

MA Balmaseda, L Ferranti, F Molteni, TN Palmer


An Earth-system prediction initiative for the twenty-first century

Bulletin of the American Meteorological Society 91 (2010) 1377-1388

M Shapiro, J Shukla, G Brunet, C Nobre, M Béland, R Dole, K Trenberth, R Anthes, G Asrar, L Barrie, P Bougeault, G Brasseur, D Burridge, A Busalacchi, J Caughey, D Chen, J Church, T Enomoto, B Hoskins, Ø Hov, A Laing, H Le Treut, J Marotzke, G McBean, G Meehl, M Miller, B Mills, J Mitchell, M Moncrieff, T Nakazawa, H Olafsson, T Palmer, D Parsons, D Rogers, A Simmons, A Troccoli, Z Toth, L Uccellini, C Velden, JM Wallace

Some scientists have proposed the Earth-System Prediction Initiative (EPI) at the 2007 GEO Summit in Cape Town, South Africa. EPI will draw upon coordination between international programs for Earth system observations, prediction, and warning, such as the WCRP, WWRP, GCOS, and hence contribute to GEO and the GEOSS. It will link with international organizations, such as the International Council for Science (ICSU), Intergovernmental Oceanographic Commission (IOC), UNEP, WMO, and World Health Organization (WHO). The proposed initiative will provide high-resolution climate models that capture the properties of regional high-impact weather events, such as tropical cyclones, heat wave, and sand and dust storms associated within multi-decadal climate projections of climate variability and change. Unprecedented international collaboration and goodwill are necessary for the success of EPI.


A Spectral Stochastic Kinetic Energy Backscatter Scheme and Its Impact on Flow-Dependent Predictability in the ECMWF Ensemble Prediction System

JOURNAL OF THE ATMOSPHERIC SCIENCES 66 (2009) 603-626

J Berner, GJ Shutts, M Leutbecher, TN Palmer


Decadal variability: Processes, predictability and prediction. ECMWF Tech Memo.

(2009) 591

D Anderson, FJ Doblas-Reyes, MA Balmaseda, A Weisheimer


Impact of a quasi-stochastic cellular automaton backscatter scheme on the systematic error and seasonal prediction skill of a global climate model

in Stochastic Physics and Climate Modelling, Cambridge University Press (2009) 15

J Berner, FJ Doblas-Reyes, TN Palmer, GJ Shutts, A Weisheimer


Stochastic parametrization and model uncertainty. ECMWF Tech Memo.

(2009) 598

TN Palmer, R Buizza, FJ Doblas-Reyes, T Jung, M Leutbecher, GJ Shutts, M Steinheimer, A Weisheimer


The characteristics of Hessian singular vectors using an advanced data assimilation scheme

QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY 135 (2009) 1117-1132

AR Lawrence, A Leutbecher, TN Palmer


A comparative method to evaluate and validate stochastic parametrizations

Quarterly Journal of the Royal Meteorological Society 135 (2009) 1095-1103

L Hermanson, B Hoskins, T Palmer

There is a growing interest in using stochastic parametrizations in numerical weather and climate prediction models. Previously, Palmer (2001) outlined the issues that give rise to the need for a stochastic parametrization and the forms such a parametrization could take. In this article a method is presented that uses a comparison between a standard-resolution version and a high-resolution version of the same model to gain information relevant for a stochastic parametrization in that model. A correction term that could be used in a stochastic parametrization is derived from the thermodynamic equations of both models. The origin of the components of this term is discussed. It is found that the component related to unresolved wave-wave interactions is important and can act to compensate for large parametrized tendencies. The correction term is not proportional to the parametrized tendency. Finally, it is explained how the correction term could be used to give information about the shape of the random distribution to be used in a stochastic parametrization. © 2009 Royal Meteorological Society.


Revolution in climate prediction is both necessary and possible: A declaration at the world modelling summit for climate prediction

Bulletin of the American Meteorological Society 90 (2009) 175-178

J Shukla, R Hagedorn, B Hoskins, J Kinter, J Marotzke, M Miller, TN Palmer, J Sungo

Addressing the global climate change, the World climate Research Program (WCRP) held a World Modeling summit for Climate Prediction on 6-9 May 2008 in Reading, England, to develop a strategy in revolutionizing prediction of the climate. The summit was cosponsored by the World Weather Research Program (WWRP) and the International Geosphere-Biosphere Program (IGBP). The event has given emphasis on the simulation and prediction of the physical climate system. The summit tried to identify challenges which are grouped into following areas such as process-based model evaluation; data assimilation, analysis, and initialization; detection and attribution of climate events; and ensembles.


Future change in wintertime atmospheric blocking simulated using a 20-km-mesh atmospheric global circulation model

Journal of Geophysical Research Atmospheres 114 (2009)

M Matsueda, R Mizuta, S Kusunoki

Future change in the frequency of atmospheric blocking is investigated through present-day (1979-2003) and future (2075-2099) simulations using 20-, 60-, 120-, and 180-km-mesh atmospheric general circulation models (AGCMs) under the Intergovernmental Panel on Climate Change Special Reports on Emission Scenarios AlB emission scenario, focusing on the Northern Hemisphere winter (December-February). The results of present-day climate simulations reveal that the AGCM with the highest horizontal resolution is required to accurately simulate Euro-Atlantic blocking, whereas the AGCM with the lowest horizontal resolution is in good agreement with reanalysis data regarding the frequency of Pacific blocking. While the lower-resolution models accurately reproduce long-lived Pacific blocking, they are unable to accurately simulate long-lived Euro-Atlantic blocking. This result suggests that the maintenance mechanism of Euro-Atlantic blocking is different from that of Pacific blocking. In the future climate simulations, both frequencies of Euro-Atlantic and Pacific blockings are predicted to show a significant decrease, mainly in the western part of each peak in present-day blocking frequency, where the westerly jet is predicted to increase in strength; no significant change is predicted in the eastern part of each peak. The number of Euro-Atlantic blocking events is predicted to decrease for almost all blocking durations, whereas the decrease in the number of Pacific blockings is remarkable for long-duration events. It is possible that long-lived (>25 days) Euro-Atlantic and Pacific blockings will disappear altogether in the future. Copyright 2009 by the American Geophysical Union.


Monte Carlo approach to turbulence

Proceedings of the XXVII International Symposium on Lattice Field Theory ‘Lattice 2009' (2009)

Dueben, D Homeier, K Jansen, D Mesterhazy, G Muenster