PJ Webster, J Jian, TM Hopson, CD Hoyos, PA Agudelo, H-R Chang, JA Curry, RL Grossman, TN Palmer, AR Subbiah

Is science fiction a genre for communicating scientific research? A case study in climate prediction

Bulletin of the American Meteorological Society 91 (2010) 1413-1415

TN Palmer

The author, T. N. Palmer describes a book by Isaac Asimov titled Nightfall, which describes a civilization's first encounter with darkness for thousands of years. The civilization inhabits the planet Lagash, which orbits one of six gravitationally-bound suns. Nightfall occurs during a total eclipse, when only one of the suns is above the horizon. Although in this sense climate change is inherently predictable, the author is not confirm whether how reliable the predictions of climate change are in practice. The first message of the story is that reliable predictions of regional climate change are crucially important to guide decisions on infrastructure investment for societies to adapt to future climate change. The second message of the story is that if current climate models can systematically misrepresent the regional effects of the annual cycle, they can also misrepresent the regional effects of climate change. One way to reduce these systematic deficiencies would be to simulate more of the climate system with the proper equations of motion.

Forecast quality assessment of the ENSEMBLES seasonal-to-decadal Stream 2 hindcasts. ECMWF Tech Memo.

ECMWF (2010) 621

FJ Doblas-Reyes, A Weisheimer, TN Palmer, JM Murphy, D Smith

Decadal climate prediction with the ECMWF coupled forecast system: Impact of ocean observations. ECMWF Tech Memo.

(2010) 633

FJ Doblas-Reyes, MA Balmaseda, A Weisheimer, TN Palmer

EC-Earth: A seamless Earth-system prediction approach in action

Bulletin of the American Meteorological Society 91 (2010) 1357-1363

W Hazeleger, CA Severijns, T Semmler, SE Ştefǎnescu, S Yang, X Wang, K Wyser, E Dutra, JM Baldasano, R Bintanja, PH Bougeault, R Caballero, AML Ekman, JH Christensen, BVJM Van Den Hurk, PPS Jiménez, CG Jones, PW Kållberg, T Koenigk, R McGrath, PMA Miranda, TPC Van Noije, TN Palmer, JA Parodi, T Schmith, FM Selten, T Storelvmo, A Sterl, H Tapamo, M Vancoppenolle, PA Viterbo, U Willén

The EC-Earth consortium is a grouping of meteorologists and Earth-system scientists from 10 European countries, put together to face the challenges of climate and weather forecasting. The NWP system of the European Centre for Medium-Range Weather Forecasts (ECWMF) forms the basis of the EC-Earth Earth-system model. NWP models are designed to accurately capture short-term atmospheric fluctuations. They are used for forecasts at daily-to-seasonal time scales and include data assimilation capabilities. Climate models are designed to represent the global coupled ocean-atmosphere system. The atmospheric model of EC-Earth version 2, is based on ECMWF's Integrated Forecasting System (IFS), cycle 31R1, corresponding to the current seasonal forecast system of ECMWF. The EC-Earth consortium and ECMWF are collaborating on development of initialization procedures to improve long-term predictions. The EC-Earth model displays good performance from daily up to inter-annual time scales and for long-term mean climate.

Diagnosing the Origin of Extended-Range Forecast Errors

MONTHLY WEATHER REVIEW 138 (2010) 2434-2446

T Jung, MJ Miller, TN Palmer

Impact of 2007 and 2008 Arctic ice anomalies on the atmospheric circulation: Implications for long-range predictions


MA Balmaseda, L Ferranti, F Molteni, TN Palmer

Toward a new generation of world climate research and computing facilities

Bulletin of the American Meteorological Society 91 (2010) 1407-1412

J Shukla, TN Palmer, R Hagedorn, BJ Hoskins, JLI Kinter, J Marotzke, MJ Miller, JM Slingo

National climate research facilities must be enhanced and dedicated multi-national facilities should be established to accelerate progress in understanding and predicting regional climate change. In addition to the merits of running climate models at a resolution comparable with that of NWP models, the continual confrontation of an NWP model with observations can provide important constraints when the same model is used for much longer-time-scale climate predictions. Short-range forecast models give encouraging results using grid lengths of close to 1 km, without parameterizing deep convection. Prediction uncertainty, a key variable can be estimated by making an ensemble of forecasts with varying initial conditions, model equations, and other input fields such as greenhouse gas concentrations. The new generation of models will yield improved statistics of daily weather and, therefore, better predictions of regional climate variations on seasonal time scales.

An Earth-system prediction initiative for the twenty-first century

Bulletin of the American Meteorological Society 91 (2010) 1377-1388

MA Shapiro, J Shukla, G Brunet, CA Nobre, M Béland, RM Dole, KE Trenberth, RA Anthes, GR Asrar, LA Barrie, PH Bougeault, GP Brasseur, DM Burridge, AJ Busalacchi, J Caughey, D Chen, JA Church, T Enomoto, BJ Hoskins, O Hov, AG Laing, H Le Treut, J Marotzke, GA McBean, GA Meehl, MJ Miller, BN Mills, JFB Mitchell, MW Moncrieff, T Nakazawa, HO Ólafsson, TN Palmer, DB Parsons, DP Rogers, AJ Simmons, A Troccoli, Z Toth, LW Uccellini, CS Velden, JM Wallace

Some scientists have proposed the Earth-System Prediction Initiative (EPI) at the 2007 GEO Summit in Cape Town, South Africa. EPI will draw upon coordination between international programs for Earth system observations, prediction, and warning, such as the WCRP, WWRP, GCOS, and hence contribute to GEO and the GEOSS. It will link with international organizations, such as the International Council for Science (ICSU), Intergovernmental Oceanographic Commission (IOC), UNEP, WMO, and World Health Organization (WHO). The proposed initiative will provide high-resolution climate models that capture the properties of regional high-impact weather events, such as tropical cyclones, heat wave, and sand and dust storms associated within multi-decadal climate projections of climate variability and change. Unprecedented international collaboration and goodwill are necessary for the success of EPI.

Decadal variability: Processes, predictability and prediction. ECMWF Tech Memo.

(2009) 591

D Anderson, FJ Doblas-Reyes, MA Balmaseda, A Weisheimer

Impact of a quasi-stochastic cellular automaton backscatter scheme on the systematic error and seasonal prediction skill of a global climate model

in Stochastic Physics and Climate Modelling, Cambridge University Press (2009) 15

J Berner, FJ Doblas-Reyes, TN Palmer, GJ Shutts, A Weisheimer

A comparative method to evaluate and validate stochastic parametrizations

Quarterly Journal of the Royal Meteorological Society 135 (2009) 1095-1103

L Hermanson, BJ Hoskins, TN Palmer

There is a growing interest in using stochastic parametrizations in numerical weather and climate prediction models. Previously, Palmer (2001) outlined the issues that give rise to the need for a stochastic parametrization and the forms such a parametrization could take. In this article a method is presented that uses a comparison between a standard-resolution version and a high-resolution version of the same model to gain information relevant for a stochastic parametrization in that model. A correction term that could be used in a stochastic parametrization is derived from the thermodynamic equations of both models. The origin of the components of this term is discussed. It is found that the component related to unresolved wave-wave interactions is important and can act to compensate for large parametrized tendencies. The correction term is not proportional to the parametrized tendency. Finally, it is explained how the correction term could be used to give information about the shape of the random distribution to be used in a stochastic parametrization. © 2009 Royal Meteorological Society.

The Invariant Set Postulate: a new geometric framework for the foundations of quantum theory and the role played by gravity


TN Palmer

ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions - Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs

Geophysical Research Letters 36 (2009)

A Weisheimer, FJ Doblas-Reyes, TN Palmer, A Alessandri, AS Arribas, M Déqué, NS Keenlyside, MK MacVean, A Navarra, P Rogel

A new 46-year hindcast dataset for seasonal-to-annual ensemble predictions has been created using a multi-model ensemble of 5 state-of-the-art coupled atmosphere-ocean circulation models. The multi-model outperforms any of the single-models in forecasting tropical Pacific SSTs because of reduced RMS errors and enhanced ensemble dispersion at all lead-times. Systematic errors are considerably reduced over the previous generation (DEMETER). Probabilistic skill scores show higher skill for the new multi-model ensemble than for DEMETER in the 4-6 month forecast range. However, substantially improved models would be required to achieve strongly statistical significant skill increases. The combination of ENSEMBLES and DEMETER into a grand multi-model ensemble does not improve the forecast skill further. Annual-range hindcasts show anomaly correlation skill of ∼0.5 up to 14 months ahead. A wide range of output from the multi-model simulations is becoming publicly available and the international community is invited to explore the full scientific potential of these data. Copyright 2009 by the American Geophysical Union.

Blocking Predictability in Operational Medium-Range Ensemble Forecasts

SOLA 5 (2009) 113-116

M Matsueda

A Spectral Stochastic Kinetic Energy Backscatter Scheme and Its Impact on Flow-Dependent Predictability in the ECMWF Ensemble Prediction System


J Berner, GJ Shutts, M Leutbecher, TN Palmer

Revolution in climate prediction is both necessary and possible: A declaration at the world modelling summit for climate prediction

Bulletin of the American Meteorological Society 90 (2009) 175-178

J Shukla, R Hagedorn, BJ Hoskins, JLI Kinter, J Marotzke, MJ Miller, TN Palmer, J Sungo

Addressing the global climate change, the World climate Research Program (WCRP) held a World Modeling summit for Climate Prediction on 6-9 May 2008 in Reading, England, to develop a strategy in revolutionizing prediction of the climate. The summit was cosponsored by the World Weather Research Program (WWRP) and the International Geosphere-Biosphere Program (IGBP). The event has given emphasis on the simulation and prediction of the physical climate system. The summit tried to identify challenges which are grouped into following areas such as process-based model evaluation; data assimilation, analysis, and initialization; detection and attribution of climate events; and ensembles.

The characteristics of Hessian singular vectors using an advanced data assimilation scheme


AR Lawrence, A Leutbecher, TN Palmer

Aerodynamic Stability and the Growth of Triangular Snow Crystals

The Microscope McCrone Research Institute 4 (2009) 157-163

KG Libbrecht, HM Arnold

We describe laboratory-grown snow crystals that exhibit a triangular, plate-like morphology, and we show that the occurrence of these crystals is much more frequent than one would expect from random growth perturbations of the more-typical hexagonal forms. We then describe an aerodynamic model that explains the formation of these crystals. A single growth perturbation on one facet of a hexagonal plate leads to air flow around the crystal that promotes the growth of alternating facets. Aerodynamic effects thus produce a weak growth instability that can cause hexagonal plates to develop into triangular plates. This mechanism solves a very old puzzle, as observers have been documenting the unexplained appearance of triangular snow crystals in nature for nearly two centuries.

Toward Seamless Prediction: Calibration of Climate Change Projections Using Seasonal Forecasts Reply


TN Palmer, FJ Doblas-Reyes, A Weisheimer, MJ Rodwell