Publications


The Structure and Evolution of Heat Waves in Southeastern Australia

Journal of Climate 27 (2014) 5768-5785

TJ Parker, GJ Berry, MJ Reeder


On the reliability of seasonal climate forecasts.

Journal of the Royal Society, Interface 11 (2014) 20131162-

A Weisheimer, TN Palmer

Seasonal climate forecasts are being used increasingly across a range of application sectors. A recent UK governmental report asked: how good are seasonal forecasts on a scale of 1-5 (where 5 is very good), and how good can we expect them to be in 30 years time? Seasonal forecasts are made from ensembles of integrations of numerical models of climate. We argue that 'goodness' should be assessed first and foremost in terms of the probabilistic reliability of these ensemble-based forecasts; reliable inputs are essential for any forecast-based decision-making. We propose that a '5' should be reserved for systems that are not only reliable overall, but where, in particular, small ensemble spread is a reliable indicator of low ensemble forecast error. We study the reliability of regional temperature and precipitation forecasts of the current operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts, universally regarded as one of the world-leading operational institutes producing seasonal climate forecasts. A wide range of 'goodness' rankings, depending on region and variable (with summer forecasts of rainfall over Northern Europe performing exceptionally poorly) is found. Finally, we discuss the prospects of reaching '5' across all regions and variables in 30 years time.


Lorenz, Godel and Penrose: new perspectives on determinism and causality in fundamental physics

CONTEMPORARY PHYSICS 55 (2014) 157-178

TN Palmer


Visualizing the uncertainty in the relationship between seasonal average climate and malaria risk.

Scientific reports 4 (2014) 7264-

DA MacLeod, AP Morse

Around $1.6 billion per year is spent financing anti-malaria initiatives, and though malaria morbidity is falling, the impact of annual epidemics remains significant. Whilst malaria risk may increase with climate change, projections are highly uncertain and to sidestep this intractable uncertainty, adaptation efforts should improve societal ability to anticipate and mitigate individual events. Anticipation of climate-related events is made possible by seasonal climate forecasting, from which warnings of anomalous seasonal average temperature and rainfall, months in advance are possible. Seasonal climate hindcasts have been used to drive climate-based models for malaria, showing significant skill for observed malaria incidence. However, the relationship between seasonal average climate and malaria risk remains unquantified. Here we explore this relationship, using a dynamic weather-driven malaria model. We also quantify key uncertainty in the malaria model, by introducing variability in one of the first order uncertainties in model formulation. Results are visualized as location-specific impact surfaces: easily integrated with ensemble seasonal climate forecasts, and intuitively communicating quantified uncertainty. Methods are demonstrated for two epidemic regions, and are not limited to malaria modeling; the visualization method could be applied to any climate impact.


Atmospheric science. Record-breaking winters and global climate change.

Science (New York, N.Y.) 344 (2014) 803-804

T Palmer


Rift valley fever outbreaks in Mauritania and related environmental conditions

International Journal of Environmental Research and Public Health 11 (2014) 903-918

C Caminade, JA Ndione, M Diallo, DA Macleod, O Faye, Y Ba, I Dia, AP Morse

Four large outbreaks of Rift Valley Fever (RVF) occurred in Mauritania in 1998, 2003, 2010 and 2012 which caused lots of animal and several human deaths. We investigated rainfall and vegetation conditions that might have impacted on RVF transmission over the affected regions. Our results corroborate that RVF transmission generally occurs during the months of September and October in Mauritania, similarly to Senegal. The four outbreaks were preceded by a rainless period lasting at least a week followed by heavy precipitation that took place during the second half of the rainy season. First human infections were generally reported three to five weeks later. By bridging the gap between meteorological forecasting centers and veterinary services, an early warning system might be developed in Senegal and Mauritania to warn decision makers and health services about the upcoming RVF risk. © 2014 by the authors; licensee MDPI, Basel, Switzerland.


The character of polar tidal signatures in the extended Canadian Middle Atmosphere Model

Journal of Geophysical Research: Atmospheres 119 (2014) 5928-5948

J Du, WE Ward, FC Cooper


Build high-resolution global climate models

NATURE 515 (2014) 338-339

T Palmer


The use of imprecise processing to improve accuracy in weather & climate prediction

Journal of Computational Physics 271 (2014) 2-18

PD Düben, H McNamara, TN Palmer

The use of stochastic processing hardware and low precision arithmetic in atmospheric models is investigated. Stochastic processors allow hardware-induced faults in calculations, sacrificing bit-reproducibility and precision in exchange for improvements in performance and potentially accuracy of forecasts, due to a reduction in power consumption that could allow higher resolution. A similar trade-off is achieved using low precision arithmetic, with improvements in computation and communication speed and savings in storage and memory requirements. As high-performance computing becomes more massively parallel and power intensive, these two approaches may be important stepping stones in the pursuit of global cloud-resolving atmospheric modelling. The impact of both hardware induced faults and low precision arithmetic is tested using the Lorenz '96 model and the dynamical core of a global atmosphere model. In the Lorenz '96 model there is a natural scale separation; the spectral discretisation used in the dynamical core also allows large and small scale dynamics to be treated separately within the code. Such scale separation allows the impact of lower-accuracy arithmetic to be restricted to components close to the truncation scales and hence close to the necessarily inexact parametrised representations of unresolved processes. By contrast, the larger scales are calculated using high precision deterministic arithmetic. Hardware faults from stochastic processors are emulated using a bit-flip model with different fault rates. Our simulations show that both approaches to inexact calculations do not substantially affect the large scale behaviour, provided they are restricted to act only on smaller scales. By contrast, results from the Lorenz '96 simulations are superior when small scales are calculated on an emulated stochastic processor than when those small scales are parametrised. This suggests that inexact calculations at the small scale could reduce computation and power costs without adversely affecting the quality of the simulations. This would allow higher resolution models to be run at the same computational cost. © 2013 The Authors.


Towards seasonal forecasting of malaria in India.

Malaria journal 13 (2014) 310-

JM Lauderdale, C Caminade, AE Heath, AE Jones, DA MacLeod, KC Gouda, US Murty, P Goswami, SR Mutheneni, AP Morse

Malaria presents public health challenge despite extensive intervention campaigns. A 30-year hindcast of the climatic suitability for malaria transmission in India is presented, using meteorological variables from a state of the art seasonal forecast model to drive a process-based, dynamic disease model.The spatial distribution and seasonal cycles of temperature and precipitation from the forecast model are compared to three observationally-based meteorological datasets. These time series are then used to drive the disease model, producing a simulated forecast of malaria and three synthetic malaria time series that are qualitatively compared to contemporary and pre-intervention malaria estimates. The area under the Relative Operator Characteristic (ROC) curve is calculated as a quantitative metric of forecast skill, comparing the forecast to the meteorologically-driven synthetic malaria time series.The forecast shows probabilistic skill in predicting the spatial distribution of Plasmodium falciparum incidence when compared to the simulated meteorologically-driven malaria time series, particularly where modelled incidence shows high seasonal and interannual variability such as in Orissa, West Bengal, and Jharkhand (North-east India), and Gujarat, Rajastan, Madhya Pradesh and Maharashtra (North-west India). Focusing on these two regions, the malaria forecast is able to distinguish between years of "high", "above average" and "low" malaria incidence in the peak malaria transmission seasons, with more than 70% sensitivity and a statistically significant area under the ROC curve. These results are encouraging given that the three month forecast lead time used is well in excess of the target for early warning systems adopted by the World Health Organization. This approach could form the basis of an operational system to identify the probability of regional malaria epidemics, allowing advanced and targeted allocation of resources for combatting malaria in India.


Stochastic Parameterisations and Model Uncertainty in the Lorenz '96 system

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Royal Society 371 (2013) 20110479

HM Arnold, IM Moroz, TN Palmer


Trapped mountain waves during a light aircraft accident

Australian Meteorological and Oceanographic Journal Australian Bureau of Meteorology 63 (2013) 377-389

TJ Parker, TP Lane

On 31 July 2007 a fatal light aircraft crash occurred near Clonbinane, Victoria, Australia and the official investigation concluded that mountain wave turbulence was the likely cause. This study uses three-dimensional numerical modelling and linear wave theory to examine the dynamics of mountain waves during this turbulence event and their role in generating turbulence. Analysis of the observed environment and three-dimensional idealised simulations elucidate the occurrence of trapped mountain waves and their role in creating regions of enhanced turbulence in the vicinity of the aircraft accident. Specifically, these waves perturb layers of low dynamic stability in the upstream flow, promoting turbulence in those layers. A simple ensemble of these three-dimensional simulations is also used to assess the robustness of the model solutions and demonstrate the utility of high-resolution ensembles for explicit mountain wave turbulence prediction.


Singular vectors, predictability and ensemble forecasting for weather and climate

Journal of Physics A: Math. Theor. 46 (2013) 254018

TN Palmer, L Zanna


REVOLUTIONIZING CLIMATE MODELING WITH PROJECT ATHENA A Multi-Institutional, International Collaboration

BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY 94 (2013) 231-245

KJL III, B Cash, D Achuthavarier, J Adams, E Altshuler, P Dirmeyer, B Doty, B Huang, EK Jin, L Marx, J Manganello, C Stan, T Wakefield, T Palmer, M Hamrud, T Jung, M Miller, P Towers, N Wedi, M Satoh, H Tomita, C Kodama, T Nasuno, K Oouchi, Y Yamada, H Taniguchi, P Andrews, T Baer, M Ezell, C Halloy, D John, B Loftis, R Mohr, K Wong


Importance of oceanic resolution and mean state on the extra-tropical response to El Niño in a matrix of coupled models

Climate Dynamics 41 (2013) 1439-1452

A Dawson, AJ Matthews, DP Stevens, MJ Roberts, PL Vidale

The extra-tropical response to El Niño in configurations of a coupled model with increased horizontal resolution in the oceanic component is shown to be more realistic than in configurations with a low resolution oceanic component. This general conclusion is independent of the atmospheric resolution. Resolving small-scale processes in the ocean produces a more realistic oceanic mean state, with a reduced cold tongue bias, which in turn allows the atmospheric model component to be forced more realistically. A realistic atmospheric basic state is critical in order to represent Rossby wave propagation in response to El Niño, and hence the extra-tropical response to El Niño. Through the use of high and low resolution configurations of the forced atmospheric-only model component we show that, in isolation, atmospheric resolution does not significantly affect the simulation of the extra-tropical response to El Niño. It is demonstrated, through perturbations to the SST forcing of the atmospheric model component, that biases in the climatological SST field typical of coupled model configurations with low oceanic resolution can account for the erroneous atmospheric basic state seen in these coupled model configurations. These results highlight the importance of resolving small-scale oceanic processes in producing a realistic large-scale mean climate in coupled models, and suggest that it might may be possible to "squeeze out" valuable extra performance from coupled models through increases to oceanic resolution alone. © 2012 Springer-Verlag.


Climate extremes and the role of dynamics.

Proc Natl Acad Sci U S A 110 (2013) 5281-5282

TN Palmer


Impact of snow initialization on sub-seasonal forecasts

Climate Dynamics 41 (2013) 1969-1982

YJ Orsolini, R Senan, G Balsamo, FJ Doblas-Reyes, F Vitart, A Weisheimer, A Carrasco, RE Benestad

The influence of the snowpack on wintertime atmospheric teleconnections has received renewed attention in recent years, partially for its potential impact on seasonal predictability. Many observational and model studies have indicated that the autumn Eurasian snow cover in particular, influences circulation patterns over the North Pacific and North Atlantic. We have performed a suite of coupled atmosphere-ocean simulations with the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble forecast system to investigate the impact of accurate snow initialisation. Pairs of 2-month ensemble forecasts were started every 15 days from the 15th of October through the 1st of December in the years 2004-2009, with either realistic initialization of snow variables based on re-analyses, or else with "scrambled" snow initial conditions from an alternate autumn date and year. Initially, in the first 15 days, the presence of a thicker snowpack cools surface temperature over the continental land masses of Eurasia and North America. At a longer lead of 30-day, it causes a warming over the Arctic and the high latitudes of Eurasia due to an intensification and westward expansion of the Siberian High. It also causes a cooling over the mid-latitudes of Eurasia, and lowers sea level pressures over the Arctic. This "warm Arctic-cold continent" difference means that the forecasts of near-surface temperature with the more realistic snow initialization are in closer agreement with re-analyses, reducing a cold model bias over the Arctic and a warm model bias over mid-latitudes. The impact of realistic snow initialization upon the forecast skill in snow depth and near-surface temperature is estimated for various lead times. Following a modest skill improvement in the first 15 days over snow-covered land, we also find a forecast skill improvement up to the 30-day lead time over parts of the Arctic and the Northern Pacific, which can be attributed to the realistic snow initialization over the land masses. © 2013 Springer-Verlag Berlin Heidelberg.


Effects of Stochastic Ice Strength Perturbation on Arctic Finite Element Sea Ice Modeling

Journal of Climate 26 (2013) 3785-3802

S Juricke, P Lemke, R Timmermann, T Rackow


Impact of snow initialization on sub-seasonal forecasts

Climate Dynamics (2013) 1-14

YJ Orsolini, R Senan, G Balsamo, F Vitart, A Weisheimer, FJ Doblas-Reyes, A Carrasco, RE Benestad

The influence of the snowpack on wintertime atmospheric teleconnections has received renewed attention in recent years, partially for its potential impact on seasonal predictability. Many observational and model studies have indicated that the autumn Eurasian snow cover in particular, influences circulation patterns over the North Pacific and North Atlantic. We have performed a suite of coupled atmosphere-ocean simulations with the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble forecast system to investigate the impact of accurate snow initialisation. Pairs of 2-month ensemble forecasts were started every 15 days from the 15th of October through the 1st of December in the years 2004-2009, with either realistic initialization of snow variables based on re-analyses, or else with "scrambled" snow initial conditions from an alternate autumn date and year. Initially, in the first 15 days, the presence of a thicker snowpack cools surface temperature over the continental land masses of Eurasia and North America. At a longer lead of 30-day, it causes a warming over the Arctic and the high latitudes of Eurasia due to an intensification and westward expansion of the Siberian High. It also causes a cooling over the mid-latitudes of Eurasia, and lowers sea level pressures over the Arctic. This "warm Arctic-cold continent" difference means that the forecasts of near-surface temperature with the more realistic snow initialization are in closer agreement with re-analyses, reducing a cold model bias over the Arctic and a warm model bias over mid-latitudes. The impact of realistic snow initialization upon the forecast skill in snow depth and near-surface temperature is estimated for various lead times. Following a modest skill improvement in the first 15 days over snow-covered land, we also find a forecast skill improvement up to the 30-day lead time over parts of the Arctic and the Northern Pacific, which can be attributed to the realistic snow initialization over the land masses. © 2013 Springer-Verlag Berlin Heidelberg.


Future projections of heat waves around Japan simulated by CMIP3 and high-resolution Meteorological Research Institute atmospheric climate models

Journal of Geophysical Research: Atmospheres 118 (2013) 3097-3109

M Nakano, M Matsueda, M Sugi