Publications


Verification of global numerical weather forecasting systems in polar regions using TIGGE data

Quarterly Journal of the Royal Meteorological Society (2014) n/a-n/a

T Jung, M Matsueda

High-latitude climate change is expected to increase the demand for reliable weather and environmental forecasts in polar regions. In this study, a quantitative assessment of the skill of state-of-the-art global weather prediction systems in polar regions is given using data from the THORPEX Interactive Grand Global Ensemble (TIGGE) for the period 2006/2007–2012/2013. Forecast skill in the Arctic is comparable to that found in the Northern Hemisphere midlatitudes. However, relative differences in the quality between different forecasting systems appear to be amplified in the Arctic. Furthermore, analysis uncertainty in the Arctic is more of an issue than it is in the midlatitudes, especially when it comes to near-surface parameters over snow- and ice-covered surfaces. Using NOAA's reforecast dataset, it is shown that the changes in forecast skill during the 7-year period considered here can largely be explained by flow-dependent error growth, especially for the more skilful forecasting systems. Finally, a direct comparison between the Arctic and Antarctic suggests that predictions of mid-tropospheric flow in the former region are more skilful.


The use of imprecise processing to improve accuracy in weather & climate prediction

Journal of Computational Physics (2013)

PD Düben, TN Palmer, H McNamara

The use of stochastic processing hardware and low precision arithmetic in atmospheric models is investigated. Stochastic processors allow hardware-induced faults in calculations, sacrificing bit-reproducibility and precision in exchange for improvements in performance and potentially accuracy of forecasts, due to a reduction in power consumption that could allow higher resolution. A similar trade-off is achieved using low precision arithmetic, with improvements in computation and communication speed and savings in storage and memory requirements. As high-performance computing becomes more massively parallel and power intensive, these two approaches may be important stepping stones in the pursuit of global cloud-resolving atmospheric modelling. The impact of both hardware induced faults and low precision arithmetic is tested using the Lorenz '96 model and the dynamical core of a global atmosphere model. In the Lorenz '96 model there is a natural scale separation; the spectral discretisation used in the dynamical core also allows large and small scale dynamics to be treated separately within the code. Such scale separation allows the impact of lower-accuracy arithmetic to be restricted to components close to the truncation scales and hence close to the necessarily inexact parametrised representations of unresolved processes. By contrast, the larger scales are calculated using high precision deterministic arithmetic. Hardware faults from stochastic processors are emulated using a bit-flip model with different fault rates. Our simulations show that both approaches to inexact calculations do not substantially affect the large scale behaviour, provided they are restricted to act only on smaller scales. By contrast, results from the Lorenz '96 simulations are superior when small scales are calculated on an emulated stochastic processor than when those small scales are parametrised. This suggests that inexact calculations at the small scale could reduce computation and power costs without adversely affecting the quality of the simulations. This would allow higher resolution models to be run at the same computational cost. © 2013 The Authors.


Benchmark Tests for Numerical Weather Forecasts on Inexact Hardware

MONTHLY WEATHER REVIEW 142 (2014) 3809-3829

PD Dueben, TN Palmer


The character of polar tidal signatures in the extended Canadian Middle Atmosphere Model

Journal of Geophysical Research: Atmospheres 119 (2014) 5928-5948

J Du, WE Ward, FC Cooper


More reliable forecasts with less precise computations: a fast-track route to cloud-resolved weather and climate simulators?

Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 372 (2014) 20130391-

TN Palmer

This paper sets out a new methodological approach to solving the equations for simulating and predicting weather and climate. In this approach, the conventionally hard boundary between the dynamical core and the sub-grid parametrizations is blurred. This approach is motivated by the relatively shallow power-law spectrum for atmospheric energy on scales of hundreds of kilometres and less. It is first argued that, because of this, the closure schemes for weather and climate simulators should be based on stochastic-dynamic systems rather than deterministic formulae. Second, as high-wavenumber elements of the dynamical core will necessarily inherit this stochasticity during time integration, it is argued that the dynamical core will be significantly over-engineered if all computations, regardless of scale, are performed completely deterministically and if all variables are represented with maximum numerical precision (in practice using double-precision floating-point numbers). As the era of exascale computing is approached, an energy- and computationally efficient approach to cloud-resolved weather and climate simulation is described where determinism and numerical precision are focused on the largest scales only.


The real butterfly effect

NONLINEARITY 27 (2014) R123-R141

TN Palmer, A Doering, G Seregin


Modes of climate variability and heat waves in Victoria, southeastern Australia

Geophysical Research Letters 41 (2014) 6926-6934

TJ Parker, GJ Berry, MJ Reeder, N Nicholls


The Structure and Evolution of Heat Waves in Southeastern Australia

Journal of Climate 27 (2014) 5768-5785

TJ Parker, GJ Berry, MJ Reeder


Stochastic Parameterisations and Model Uncertainty in the Lorenz '96 system

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Royal Society 371 (2013) 20110479

HM Arnold, IM Moroz, TN Palmer


Singular vectors, predictability and ensemble forecasting for weather and climate

Journal of Physics A: Math. Theor. 46 (2013) 254018

TN Palmer, L Zanna


Should weather and climate prediction models be deterministic or stochastic?

Weather Wiley 68 (2013) 264-264

HM Arnold


Future projections of heat waves around Japan simulated by CMIP3 and high-resolution Meteorological Research Institute atmospheric climate models

Journal of Geophysical Research: Atmospheres 118 (2013) 3097-3109

M Nakano, M Matsueda, M Sugi


Predicting multiyear North Atlantic Ocean variability

Journal of Geophysical Research: Oceans 118 (2013) 1087-1098

W Hazeleger, B Wouters, GJ Van Oldenborgh, S Corti, T Palmer, D Smith, N Dunstone, J Kröger, H Pohlmann, JS Von Storch

We assess the skill of retrospective multiyear forecasts of North Atlantic ocean characteristics obtained with ocean-atmosphere-sea ice models that are initialized with estimates from the observed ocean state. We show that these multimodel forecasts can skilfully predict surface and subsurface ocean variability with lead times of 2 to 9 years. We focus on assessment of forecasts of major well-observed oceanic phenomena that are thought to be related to the Atlantic meridional overturning circulation (AMOC). Variability in the North Atlantic subpolar gyre, in particular that associated with the Atlantic Multidecadal Oscillation, is skilfully predicted 2-9 years ahead. The fresh water content and heat content in major convection areas such as the Labrador Sea are predictable as well, although individual events are not captured. The skill of these predictions is higher than that of uninitialized coupled model simulations and damped persistence. However, except for heat content in the subpolar gyre, differences between damped persistence and the initialized predictions are not significant. Since atmospheric variability is not predictable on multiyear time scales, initialization of the ocean and oceanic processes likely provide skill. Assessment of relationships of patterns of variability and ocean heat content and fresh water content shows differences among models indicating that model improvement can lead to further improvements of the predictions. The results imply there is scope for skilful predictions of the AMOC. © 2013. American Geophysical Union. All Rights Reserved.


Impact of snow initialization on sub-seasonal forecasts

Climate Dynamics 41 (2013) 1969-1982

YJ Orsolini, R Senan, G Balsamo, FJ Doblas-Reyes, F Vitart, A Weisheimer, A Carrasco, RE Benestad

The influence of the snowpack on wintertime atmospheric teleconnections has received renewed attention in recent years, partially for its potential impact on seasonal predictability. Many observational and model studies have indicated that the autumn Eurasian snow cover in particular, influences circulation patterns over the North Pacific and North Atlantic. We have performed a suite of coupled atmosphere-ocean simulations with the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble forecast system to investigate the impact of accurate snow initialisation. Pairs of 2-month ensemble forecasts were started every 15 days from the 15th of October through the 1st of December in the years 2004-2009, with either realistic initialization of snow variables based on re-analyses, or else with "scrambled" snow initial conditions from an alternate autumn date and year. Initially, in the first 15 days, the presence of a thicker snowpack cools surface temperature over the continental land masses of Eurasia and North America. At a longer lead of 30-day, it causes a warming over the Arctic and the high latitudes of Eurasia due to an intensification and westward expansion of the Siberian High. It also causes a cooling over the mid-latitudes of Eurasia, and lowers sea level pressures over the Arctic. This "warm Arctic-cold continent" difference means that the forecasts of near-surface temperature with the more realistic snow initialization are in closer agreement with re-analyses, reducing a cold model bias over the Arctic and a warm model bias over mid-latitudes. The impact of realistic snow initialization upon the forecast skill in snow depth and near-surface temperature is estimated for various lead times. Following a modest skill improvement in the first 15 days over snow-covered land, we also find a forecast skill improvement up to the 30-day lead time over parts of the Arctic and the Northern Pacific, which can be attributed to the realistic snow initialization over the land masses. © 2013 Springer-Verlag Berlin Heidelberg.


Effects of Stochastic Ice Strength Perturbation on Arctic Finite Element Sea Ice Modeling

Journal of Climate 26 (2013) 3785-3802

S Juricke, P Lemke, R Timmermann, T Rackow


Impact of snow initialization on sub-seasonal forecasts

Climate Dynamics (2013) 1-14

YJ Orsolini, R Senan, G Balsamo, F Vitart, A Weisheimer, FJ Doblas-Reyes, A Carrasco, RE Benestad

The influence of the snowpack on wintertime atmospheric teleconnections has received renewed attention in recent years, partially for its potential impact on seasonal predictability. Many observational and model studies have indicated that the autumn Eurasian snow cover in particular, influences circulation patterns over the North Pacific and North Atlantic. We have performed a suite of coupled atmosphere-ocean simulations with the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble forecast system to investigate the impact of accurate snow initialisation. Pairs of 2-month ensemble forecasts were started every 15 days from the 15th of October through the 1st of December in the years 2004-2009, with either realistic initialization of snow variables based on re-analyses, or else with "scrambled" snow initial conditions from an alternate autumn date and year. Initially, in the first 15 days, the presence of a thicker snowpack cools surface temperature over the continental land masses of Eurasia and North America. At a longer lead of 30-day, it causes a warming over the Arctic and the high latitudes of Eurasia due to an intensification and westward expansion of the Siberian High. It also causes a cooling over the mid-latitudes of Eurasia, and lowers sea level pressures over the Arctic. This "warm Arctic-cold continent" difference means that the forecasts of near-surface temperature with the more realistic snow initialization are in closer agreement with re-analyses, reducing a cold model bias over the Arctic and a warm model bias over mid-latitudes. The impact of realistic snow initialization upon the forecast skill in snow depth and near-surface temperature is estimated for various lead times. Following a modest skill improvement in the first 15 days over snow-covered land, we also find a forecast skill improvement up to the 30-day lead time over parts of the Arctic and the Northern Pacific, which can be attributed to the realistic snow initialization over the land masses. © 2013 Springer-Verlag Berlin Heidelberg.


The influence of tropical cyclones on heat waves in Southeastern Australia

Geophysical Research Letters 40 (2013) 6264-6270

TJ Parker, GJ Berry, MJ Reeder


Trapped mountain waves during a light aircraft accident

Australian Meteorological and Oceanographic Journal Australian Bureau of Meteorology 63 (2013) 377-389

TJ Parker, TP Lane

On 31 July 2007 a fatal light aircraft crash occurred near Clonbinane, Victoria, Australia and the official investigation concluded that mountain wave turbulence was the likely cause. This study uses three-dimensional numerical modelling and linear wave theory to examine the dynamics of mountain waves during this turbulence event and their role in generating turbulence. Analysis of the observed environment and three-dimensional idealised simulations elucidate the occurrence of trapped mountain waves and their role in creating regions of enhanced turbulence in the vicinity of the aircraft accident. Specifically, these waves perturb layers of low dynamic stability in the upstream flow, promoting turbulence in those layers. A simple ensemble of these three-dimensional simulations is also used to assess the robustness of the model solutions and demonstrate the utility of high-resolution ensembles for explicit mountain wave turbulence prediction.


Importance of oceanic resolution and mean state on the extra-tropical response to El Niño in a matrix of coupled models

Climate Dynamics 41 (2013) 1439-1452

A Dawson, AJ Matthews, DP Stevens, MJ Roberts, PL Vidale

The extra-tropical response to El Niño in configurations of a coupled model with increased horizontal resolution in the oceanic component is shown to be more realistic than in configurations with a low resolution oceanic component. This general conclusion is independent of the atmospheric resolution. Resolving small-scale processes in the ocean produces a more realistic oceanic mean state, with a reduced cold tongue bias, which in turn allows the atmospheric model component to be forced more realistically. A realistic atmospheric basic state is critical in order to represent Rossby wave propagation in response to El Niño, and hence the extra-tropical response to El Niño. Through the use of high and low resolution configurations of the forced atmospheric-only model component we show that, in isolation, atmospheric resolution does not significantly affect the simulation of the extra-tropical response to El Niño. It is demonstrated, through perturbations to the SST forcing of the atmospheric model component, that biases in the climatological SST field typical of coupled model configurations with low oceanic resolution can account for the erroneous atmospheric basic state seen in these coupled model configurations. These results highlight the importance of resolving small-scale oceanic processes in producing a realistic large-scale mean climate in coupled models, and suggest that it might may be possible to "squeeze out" valuable extra performance from coupled models through increases to oceanic resolution alone. © 2012 Springer-Verlag.


Estimation of the local response to a forcing in a high dimensional system using the fluctuation-dissipation theorem

Nonlinear Processes in Geophysics 20 (2013) 239-248

FC Cooper, JG Esler, PH Haynes

The fluctuation-dissipation theorem (FDT) has been proposed as a method of calculating the response of the earth's atmosphere to a forcing. For this problem the high dimensionality of the relevant data sets makes truncation necessary. Here we propose a method of truncation based upon the assumption that the response to a localised forcing is spatially localised, as an alternative to the standard method of choosing a number of the leading empirical orthogonal functions. For systems where this assumption holds, the response to any sufficiently small non-localised forcing may be estimated using a set of truncations that are chosen algorithmically. We test our algorithm using 36 and 72 variable versions of a stochastic Lorenz 95 system of ordinary differential equations. We find that, for long integrations, the bias in the response estimated by the FDT is reduced from ∼75% of the true response to ∼30%. © 2013 Author(s).