Publications


Scaling of spontaneous rotation with temperature and plasma current in tokamaks

ArXiv (2011)

FI Parra, MFF Nave, AA Schekochihin, C Giroud, JSD Grassie, JHF Severo, PD Vries, KD Zastrow, JETEFDA Contributors

Using theoretical arguments, a simple scaling law for the size of the intrinsic rotation observed in tokamaks in the absence of momentum injection is found: the velocity generated in the core of a tokamak must be proportional to the ion temperature difference in the core divided by the plasma current, independent of the size of the device. The constant of proportionality is of the order of $10\,\mathrm{km \cdot s^{-1} \cdot MA \cdot keV^{-1}}$. When the intrinsic rotation profile is hollow, i.e. it is counter-current in the core of the tokamak and co-current in the edge, the scaling law presented in this Letter fits the data remarkably well for several tokamaks of vastly different size and heated by different mechanisms.


FLASH magnetohydrodynamic simulations of shock-generated magnetic field experiments

High Energy Density Physics 8 (2012) 322-328

P Tzeferacos, M Fatenejad, N Flocke, DQ Lamb, D Lee, A Scopatz, K Weide, G Gregori, J Meinecke

We report the results of benchmark FLASH magnetohydrodynamic (MHD) simulations of experiments conducted by the University of Oxford High Energy Density Laboratory Astrophysics group and its collaborators at the Laboratoire pour l'Utilisation des Lasers Intenses (LULI). In these experiments, a long-pulse laser illuminates a target in a chamber filled with Argon gas, producing shock waves that generate magnetic fields via the Biermann battery mechanism. We first outline the implementation of 2D cylindrical geometry in the unsplit MHD solver in FLASH and present results of verification tests. We then describe the results of benchmark 2D cylindrical MHD simulations of the LULI experiments using FLASH that explore the impact of external fields along with the possibility of magnetic field amplification by turbulence that is associated with the shock waves and that is induced by a grid placed in the gas-filled chamber. © 2012 Elsevier B.V.


Zero-Turbulence Manifold in a Toroidal Plasma

ArXiv (2012)

EG Highcock, AA Schekochihin, SC Cowley, M Barnes, FI Parra, CM Roach, W Dorland

Sheared toroidal flows can cause bifurcations to zero-turbulent-transport states in tokamak plasmas. The maximum temperature gradients that can be reached are limited by subcritical turbulence driven by the parallel velocity gradient. Here it is shown that q/\epsilon (magnetic field pitch/inverse aspect ratio) is a critical control parameter for sheared tokamak turbulence. By reducing q/\epsilon, far higher temperature gradients can be achieved without triggering turbulence, in some instances comparable to those found experimentally in transport barriers. The zero-turbulence manifold is mapped out, in the zero-magnetic-shear limit, over the parameter space (\gamma_E, q/\epsilon, R/L_T), where \gamma_E is the perpendicular flow shear and R/L_T is the normalised inverse temperature gradient scale. The extent to which it can be constructed from linear theory is discussed.


Accretion by galaxies

ASTR SOC P 197 (2000) 107-114

JJ Binney

Both theory and observation indicate that galaxies like the Milky Way accrete matter at the rate of a few M. per year.


Dynamics of secular evolution

ArXiv (2012)

J Binney

The text of lectures to the 2011 Tenerife Winter School. The School's theme was "Secular Evolution of Galaxies" and my task was to present the underlying stellar-dynamical theory. Other lecturers were speaking on the role of bars and chemical evolution, so these topics are avoided here. We start with an account of the connections between isolating integrals, quasiperiodicity and angle-action variables - these variables played a unifying role throughout the lectures. This leads on to the phenomenon of resonant trapping and how this can lead to chaos in cuspy potentials and phase-space mixing in slowly evolving potentials. Surfaces of section and frequency analysis are introduced as diagnostics of phase-space structure. Real galactic potentials include a fluctuating part that drives the system towards unattainable thermal equilibrium. Two-body encounters are only one source of fluctuations, and all fluctuations will drive similar evolution. We derive the orbit-averaged Fokker-Planck equation and relations that hold between the second-order diffusion coefficients and both the power spectrum of the fluctuations and the first-order diffusion coefficients. From the observed heating of the solar neighbourhood we show that the second-order diffusion coefficients must scale as J^{1/2}. We show that periodic spiral structure shifts angular momentum outwards, heating at the Lindblad resonances and mixing at corotation. The equation that would yield the normal modes of a stellar disc is first derived and then used to discuss the propagation of tightly-wound spiral waves. The winding up of such waves is explains why cool stellar discs are responsive systems that amplify ambient noise. An explanation is offered of why the Lin-Shu-Kalnajs dispersion relation and even global normal-mode calculations provide a very incomplete understanding of the dynamics of stellar discs.


Subcritical fluctuations and suppression of turbulence in differentially rotating gyrokinetic plasmas

PLASMA PHYSICS AND CONTROLLED FUSION 54 (2012) ARTN 055011

AA Schekochihin, EG Highcock, SC Cowley


Measurements of radiative shock properties using X-ray Thomson scattering

IEEE International Conference on Plasma Science (2009)

A Visco, RP Drake, MJ Grosskopf, SH Glenzer, DH Froula, G Gregori


Measuring electron-positron annihilation radiation from laser plasma interactions

Review of Scientific Instruments 83 (2012)

H Chen, R Tommasini, J Seely, CI Szabo, U Feldman, N Pereira, G Gregori, K Falk, J Mithen, CD Murphy

We investigated various diagnostic techniques to measure the 511 keV annihilation radiations. These include step-wedge filters, transmission crystal spectroscopy, single-hit CCD detectors, and streaked scintillating detection. While none of the diagnostics recorded conclusive results, the step-wedge filter that is sensitive to the energy range between 100 keV and 700 keV shows a signal around 500 keV that is clearly departing from a pure Bremsstrahlung spectrum and that we ascribe to annihilation radiation. © 2012 American Institute of Physics.


Dense Electron-Positron Plasmas and Ultraintense gamma rays from Laser-Irradiated Solids

Physical Review Letters 108 (2012) 165006

CP Ridgers, CS Brady, R Duclous, JG Kirk, K Bennett, TD Arber, ALP Robinson, AR Bell


Inverse Compton X-ray halos around high-z radio galaxies: A feedback mechanism powered by far-infrared starbursts or the CMB?

ArXiv (2012)

I Smail, KM Blundell, BD Lehmer, DM Alexander

We report the detection of extended X-ray emission around two powerful high-z radio galaxies (HzRGs) at z~3.6 (4C03.24 & 4C19.71) and use these to investigate the origin of extended, Inverse Compton (IC) powered X-ray halos at high z. The halos have X-ray luminosities of Lx~3e44 erg/s and sizes of ~60kpc. Their morphologies are broadly similar to the ~60-kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either CMB or FIR photons from the dust-obscured starbursts in these galaxies. These observations double the number of z>3 HzRGs with X-ray detected IC halos. We compare the IC X-ray to radio luminosity ratios for these new detections to the two previously detected z~3.8 HzRGs. Given the similar redshifts, we would expect comparable X-ray IC luminosities if CMB mm photons are the seed field for the IC emission. Instead the two z~3.6 HzRGs, which are ~4x fainter in the FIR, also have ~4x fainter X-ray IC emission. Including a further six z>2 radio sources with IC X-ray halos from the literature, we suggest that in the more compact (lobe sizes <100-200kpc), majority of radio sources, the bulk of the IC emission may be driven by scattering of locally produced FIR photons from luminous, dust-obscured starbursts within these galaxies, rather than CMB photons. The resulting X-ray emission can ionise the gas on ~100-200-kpc scales around these systems and thus form their extended Ly-alpha emission line halos. The starburst and AGN activity in these galaxies are thus combining to produce an effective and wide-spread "feedback" process, acting on the long-term gas reservoir for the galaxy. If episodic radio activity and co-eval starbursts are common in massive, high-z galaxies, then this IC-feedback mechanism may affect the star-formation histories of massive galaxies. [Abridged]


Controlling fast-electron-beam divergence using two laser pulses

Physical Review Letters 109 (2012)

RHH Scott, SJ Rose, PA Norreys, K Markey, KL Lancaster, CM Brenner, IO Musgrave, APL Robinson, MM Notley, D Neely, C Beaucourt, JJ Santos, J-L Feugeas, P Nicolaï, G Malka, VT Tikhonchuk, H-P Schlenvoigt, SD Baton, CP Ridgers, RJ Gray, P McKenna, J Pasley, K Li, JR Davies

This Letter describes the first experimental demonstration of the guiding of a relativistic electron beam in a solid target using two colinear, relativistically intense, picosecond laser pulses. The first pulse creates a magnetic field that guides the higher-current, fast-electron beam generated by the second pulse. The effects of intensity ratio, delay, total energy, and intrinsic prepulse are examined. Thermal and Kα imaging show reduced emission size, increased peak emission, and increased total emission at delays of 4-6 ps, an intensity ratio of 10 1 (second:first) and a total energy of 186 J. In comparison to a single, high-contrast shot, the inferred fast-electron divergence is reduced by 2.7 times, while the fast-electron current density is increased by a factor of 1.8. The enhancements are reproduced with modeling and are shown to be due to the self-generation of magnetic fields. Such a scheme could be of considerable benefit to fast-ignition inertial fusion. © 2012 American Physical Society.


Supernova-driven gas accretion in the Milky Way

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 419 (2012) 1107-1120

A Marasco, F Fraternali, JJ Binney


The Epoch of Disk Settling: z~1 to Now

ArXiv (2012)

SA Kassin, BJ Weiner, SM Faber, JP Gardner, CNA Willmer, AL Coil, MC Cooper, J Devriendt, AA Dutton, P Guhathakurta, DC Koo, AJ Metevier, KG Noeske, JR Primack

We present evidence from a sample of 544 galaxies from the DEEP2 Survey for evolution of the internal kinematics of blue galaxies with stellar masses ranging 8.0 < log M* (M_Sun) < 10.7 over 0.2<z<1.2. DEEP2 provides galaxy spectra and Hubble imaging from which we measure emission-line kinematics and galaxy inclinations, respectively. Our large sample allows us to overcome scatter intrinsic to galaxy properties in order to examine trends in kinematics. We find that at a fixed stellar mass galaxies systematically decrease in disordered motions and increase in rotation velocity and potential well depth with time. Massive galaxies are the most well-ordered at all times examined, with higher rotation velocities and less disordered motions than less massive galaxies. We quantify disordered motions with an integrated gas velocity dispersion corrected for beam smearing (sigma_g). It is unlike the typical pressure-supported velocity dispersion measured for early type galaxies and galaxy bulges. Because both seeing and the width of our spectral slits comprise a significant fraction of the galaxy sizes, sigma_g integrates over velocity gradients on large scales which can correspond to non-ordered gas kinematics. We compile measurements of galaxy kinematics from the literature over 1.2<z<3.8 and do not find any trends with redshift, likely for the most part because these datasets are biased toward the most highly star-forming systems. In summary, over the last ~8 billion years since z=1.2, blue galaxies evolve from disordered to ordered systems as they settle to become the rotation-dominated disk galaxies observed in the Universe today, with the most massive galaxies being the most evolved at any time.


Weak Alfvén-wave turbulence revisited.

Phys Rev E Stat Nonlin Soft Matter Phys 85 (2012) 036406-

AA Schekochihin, SV Nazarenko, TA Yousef

Weak Alfvénic turbulence in a periodic domain is considered as a mixed state of Alfvén waves interacting with the two-dimensional (2D) condensate. Unlike in standard treatments, no spectral continuity between the two is assumed, and, indeed, none is found. If the 2D modes are not directly forced, k(-2) and k(-1) spectra are found for the Alfvén waves and the 2D modes, respectively, with the latter less energetic than the former. The wave number at which their energies become comparable marks the transition to strong turbulence. For imbalanced energy injection, the spectra are similar, and the Elsasser ratio scales as the ratio of the energy fluxes in the counterpropagating Alfvén waves. If the 2D modes are forced, a 2D inverse cascade dominates the dynamics at the largest scales, but at small enough scales, the same weak and then strong regimes as described above are achieved.


Plasma switch as a temporal overlap tool for pump-probe experiments at FEL facilities

Journal of Instrumentation 7 (2012)

M Harmand, S Düsterer, T Laarmann, A Przystawik, H Redlin, M Schulz, F Tavella, S Toleikis, D Murphy, D Brown, G Gregori, T White, M Cammarata, D Fritz, J Lee, H Lemke, T Döppner, H Glenzer, E Förster, V Hilbert, U Zastrau, J Gaudin, T Tschentscher, S Göde, K-H Meiwes-Broer, S Skruszewicz, D Hochhaus, P Neumayer, E Galtier, A Moinard

We have developed an easy-to-use and reliable timing tool to determine the arrival time of an optical laser and a free electron laser (FEL) pulses within the jitter limitation. This timing tool can be used from XUV to X-rays and exploits high FELs intensities. It uses a shadowgraph technique where we optically (at 800 nm) image a plasma created by an intense XUV or X-ray FEL pulse on a transparent sample (glass slide) directly placed at the pump - probe sample position. It is based on the physical principle that the optical properties of the material are drastically changed when its free electron density reaches the critical density. At this point the excited glass sample becomes opaque to the optical laser pulse. The ultra-short and intense XUV or X-ray FEL pulse ensures that a critical electron density can be reached via photoionization and subsequent collisional ionization within the XUV or X-ray FEL pulse duration or even faster. This technique allows to determine the relative arrival time between the optical laser and the FEL pulses in only few single shots with an accuracy mainly limited by the optical laser pulse duration and the jitter between the FEL and the optical laser. Considering the major interest in pump-probe experiments at FEL facilities in general, such a femtosecond resolution timing tool is of utmost importance. © 2012 IOP Publishing Ltd and Sissa Medialab srl.


Self-organized electromagnetic field structures in laser-produced counter-streaming plasmas

Nature Physics (2012)

NL Kugland, DD Ryutov, P-Y Chang, RP Drake, G Fiksel, DH Froula, SH Glenzer, G Gregori, M Grosskopf, M Koenig, Y Kuramitsu, C Kuranz, MC Levy, E Liang, J Meinecke, F Miniati, T Morita, A Pelka, C Plechaty, R Presura, A Ravasio, BA Remington, B Reville, JS Ross, Y Sakawa, A Spitkovsky, H Takabe, H-S Park


Connecting the cosmic web to the spin of dark halos: implications for galaxy formation

ArXiv (2012)

S Codis, C Pichon, J Devriendt, A Slyz, D Pogosyan, Y Dubois, T Sousbie

We investigate the alignment of the spin of dark matter halos relative (i) to the surrounding large-scale filamentary structure, and (ii) to the tidal tensor eigenvectors using the Horizon 4pi dark matter simulation which resolves over 43 million dark matter halos at redshift zero. We detect a clear mass transition: the spin of dark matter halos above a critical mass tends to be perpendicular to the closest filament, and aligned with the intermediate axis of the tidal tensor, whereas the spin of low-mass halos is more likely to be aligned with the closest filament. Furthermore, this critical mass of 5 10^12 is redshift-dependent and scales as (1+z)^-2.5. We propose an interpretation of this signal in terms of large-scale cosmic flows. In this picture, most low-mass halos are formed through the winding of flows embedded in misaligned walls; hence they acquire a spin parallel to the axis of the resulting filaments forming at the intersection of these walls. On the other hand, more massive halos are typically the products of later mergers along such filaments, and thus they acquire a spin perpendicular to this direction when their orbital angular momentum is converted into spin. We show that this scenario is consistent with both the measured excess probabilities of alignment w.r.t. the eigen-directions of the tidal tensor, and halo merger histories. On a more qualitative level, it also seems compatible with 3D visualization of the structure of the cosmic web as traced by "smoothed" dark matter simulations or gas tracer particles. Finally, it provides extra support to the disc forming paradigm presented by Pichon et al (2011) as it extends it by characterizing the geometry of secondary infall at high redshift.


Enhancing and inhibiting star formation: High-resolution simulation studies of the impact of cold accretion, mergers and feedback on individual massive galaxies

Proceedings of the International Astronomical Union 8 (2012) 13-16

LC Powell, S Khochfar, F Bournaud, D Chapon, R Teyssier, J Devriendt, A Slyz, V Gaibler

The quest for a better understanding of the evolution of massive galaxies can be broadly summarised with 2 questions: how did they build up their large (stellar) masses and what eventually quenched their star formation (SF)? To tackle these questions, we use high-resolution ramses simulations (Teyssier 2002) to study several aspects of the detailed interplay between accretion (mergers and cold flows), SF and feedback in individual galaxies. We examine SF in major mergers; a process crucial to stellar mass assembly. We explore whether the merger-induced, clustered SF is as important a mechanism in average mergers, as it is in extreme systems like the Antennae. We find that interaction-induced turbulence drives up the velocity dispersion, and that there is a correlated rise in SFR in all our simulated mergers as the density pdf evolves to have an excess of very dense gas. Next, we introduce a new study into whether mechanical jet feedback can impact upon the ability of hot gas haloes to provide a supply of fuel for SF during mergers and in their remnants. Finally, we briefly review our recent study, in which we examine the effect of supernova (SN) feedback on galaxies accreting via the previously overlooked cold-mode, by resimulating a stream-fed galaxy at z ~ 9. A far-reaching galactic wind results yet it cannot suppress the cold, filamentary accretion or eject significant mass in order to reduce the SFR, suggesting that SN feedback may not be as effective as is often assumed. © 2013 International Astronomical Union.


Self-regulated growth of supermassive black holes by a dual jet-heating active galactic nucleus feedback mechanism: Methods, tests and implications for cosmological simulations

Monthly Notices of the Royal Astronomical Society 420 (2012) 2662-2683

Y Dubois, J Devriendt, A Slyz, R Teyssier

We develop a subgrid model for the growth of supermassive black holes (BHs) and their associated active galactic nucleus (AGN) feedback in hydrodynamical cosmological simulations. This model transposes previous attempts to describe BH accretion and AGN feedback with the smoothed particle hydrodynamics (SPH) technique to the adaptive mesh refinement framework. It also furthers their development by implementing a new jet-like outflow treatment of the AGN feedback which we combine with the heating mode traditionally used in the SPH approach. Thus, our approach allows one to test the robustness of the conclusions derived from simulating the impact of self-regulated AGN feedback on galaxy formation vis-à-vis the numerical method. Assuming that BHs are created in the early stages of galaxy formation, they grow by mergers and accretion of gas at a Eddington-limited Bondi accretion rate. However this growth is regulated by AGN feedback which we model using two different modes: a quasar-heating mode when accretion rates on to the BHs are comparable to the Eddington rate, and a radio-jet mode at lower accretion rates which not only deposits energy, but also deposits mass and momentum on the grid. In other words, our feedback model deposits energy as a succession of thermal bursts and jet outflows depending on the properties of the gas surrounding the BHs. We assess the plausibility of such a model by comparing our results to observational measurements of the co-evolution of BHs and their host galaxy properties, and check their robustness with respect to numerical resolution. We show that AGN feedback must be a crucial physical ingredient for the formation of massive galaxies as it appears to be able to efficiently prevent the accumulation of and/or expel cold gas out of haloes/galaxies and significantly suppress star formation. Our model predicts that the relationship between BHs and their host galaxy mass evolves as a function of redshift, because of the vigorous accretion of cold material in the early Universe that drives Eddington-limited accretion on to BHs. Quasar activity is also enhanced at high redshift. However, as structures grow in mass and lose their cold material through star formation and efficient BH feedback ejection, the AGN activity in the low-redshift Universe becomes more and more dominated by the radio mode, which powers jets through the hot circumgalactic medium. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.


A review of Vlasov-Fokker-Planck numerical modeling of inertial confinement fusion plasma

Journal of Computational Physics 231 (2012) 1051-1079

AGR Thomas, M Tzoufras, AR Bell, APL Robinson, RJ Kingham, CP Ridgers, M Sherlock

The interaction of intense lasers with solid matter generates a hot plasma state that is well described by the Vlasov-Fokker-Planck equation. Accurate and efficient modeling of the physics in these scenarios is highly pertinent, because it relates to experimental campaigns to produce energy by inertial confinement fusion on facilities such as the National Ignition Facility. Calculations involving the Vlasov-Fokker-Planck equation are computationally intensive, but are crucial to proper understanding of a wide variety of physical effects and instabilities in inertial fusion plasmas. In this topical review, we will introduce the background physics related to Vlasov-Fokker-Planck simulation, and then proceed to describe results from numerical simulation of inertial fusion plasma in a pedagogical manner by discussing some key numerical algorithm developments that enabled the research to take place. A qualitative comparison of the techniques is also given. © 2011 Elsevier Inc.