Alignment and scaling of large-scale fluctuations in the solar wind

ArXiv (2012)

RT Wicks, A Mallet, TS Horbury, CHK Chen, AA Schekochihin, JJ Mitchell

We investigate the dependence of solar wind fluctuations measured by the Wind spacecraft on scale and on the degree of alignment between oppositely directed Elsasser fields. This alignment controls the strength of the non-linear interactions and, therefore, the turbulence. We find that at scales larger than the outer scale of the turbulence the Elsasser fluctuations become on average more anti-aligned as the outer scale is approached from above. Conditioning structure functions using the alignment angle reveals turbulent scaling of unaligned fluctuations at scales previously believed to lie outside the turbulent cascade in the `1/f range'. We argue that the 1/f range contains a mixture of non-interacting anti-aligned population of Alfv\'{e}n waves and magnetic force-free structures plus a subdominant population of unaligned cascading turbulent fluctuations.

Self-consistent measurement of the equation of state of liquid deuterium

High Energy Density Physics 8 (2012) 76-80

K Falk, SP Regan, J Vorberger, MA Barrios, TR Boehly, DE Fratanduono, SH Glenzer, DG Hicks, SX Hu, CD Murphy, PB Radha, S Rothman, AP Jephcoat, JS Wark, DO Gericke, G Gregori

We combine experiments and theoretical models to characterize warm dense deuterium. A shockwave was driven in a planar target by the OMEGA laser without a standard pusher making the analysis independent of a quartz or aluminium pressure standard. The conditions of the shocked material were diagnosed with VISAR and optical pyrometry which yields the shock velocity (16.9 ± 0.9 km/s) and the temperature (0.57 ± 0.05 eV). We find a self-consistent description of the data when using ab initio simulations (DFT-MD), but not for other equation of state (EOS) models tested. © 2011 Elsevier B.V.

Constraining stellar assembly and active galactic nucleus feedback at the peak epoch of star formation


T Kimm, S Kaviraj, JEG Devriendt, SH Cohen, RA Windhorst, Y Dubois, A Slyz, NP Hathi, RRE Jr, RW O'Connell, MA Dopita, J Silk

Measurement and physical interpretation of the mean motion of turbulent density patterns detected by the beam emission spectroscopy system on the mega amp spherical tokamak

Plasma Physics and Controlled Fusion 54 (2012)

Y-C Ghim, AR Field, D Dunai, S Zoletnik, L Bardóczi, AA Schekochihin

The mean motion of turbulent patterns detected by a two-dimensional beam emission spectroscopy (BES) diagnostic on the mega amp spherical tokamak (MAST) is determined using a cross-correlation time delay method. Statistical reliability of the method is studied by means of synthetic data analysis. The experimental measurements on MAST indicate that the apparent mean poloidal motion of the turbulent density patterns in the lab frame arises because the longest correlation direction of the patterns (parallel to the local background magnetic fields) is not parallel to the direction of the fastest mean plasma flows (usually toroidal when strong neutral-beam injection is present). This effect is particularly pronounced in a spherical tokamak because of the relatively large mean rotation and large magnetic pitch angle. The experimental measurements are consistent with the mean motion of plasma being toroidal. The sum of all other contributions (mean poloidal plasma flow, phase velocity of the density patterns in the plasma frame, non-linear effects, etc) to the apparent mean poloidal velocity of the density patterns is found to be negligible. These results hold in all investigated L-mode, H-mode and internal transport barrier discharges. The one exception is a high-poloidal-beta (the ratio of the plasma pressure to the poloidal magnetic field energy density) discharge, where a large magnetic island exists. In this case BES detects very little motion. This effect is currently theoretically unexplained. © 2012 IOP Publishing Ltd.

Laboratory investigations on the origins of cosmic rays

Plasma Physics and Controlled Fusion 54 (2012)

Y Kuramitsu, Y Sakawa, T Morita, T Ide, K Nishio, H Tanji, H Aoki, S Dono, CD Gregory, JN Waugh, N Woolsey, A Dizière, A Pelka, A Ravasio, B Loupias, M Koenig, SA Pikuz, YT Li, Y Zhang, X Liu, JY Zhong, J Zhang, G Gregori, N Nakanii, K Kondo, Y Mori, E Miura, R Kodama, Y Kitagawa, K Mima, KA Tanaka, H Azechi, T Moritaka, Y Matsumoto, T Sano, A Mizuta, N Ohnishi, M Hoshino, H Takabe

We report our recent efforts on the experimental investigations related to the origins of cosmic rays. The origins of cosmic rays are long standing open issues in astrophysics. The galactic and extragalactic cosmic rays are considered to be accelerated in non-relativistic and relativistic collisionless shocks in the universe, respectively. However, the acceleration and transport processes of the cosmic rays are not well understood, and how the collisionless shocks are created is still under investigation. Recent high-power and high-intensity laser technologies allow us to simulate astrophysical phenomena in laboratories. We present our experimental results of collisionless shock formations in laser-produced plasmas. © 2012 IOP Publishing Ltd.

Feeding compact bulges and supermassive black holes with low angular momentum cosmic gas at high redshift

Monthly Notices of the Royal Astronomical Society 423 (2012) 3616-3630

Y Dubois, C Pichon, M Haehnelt, T Kimm, A Slyz, J Devriendt, D Pogosyan

We use cosmological hydrodynamical simulations to show that a significant fraction of the gas in high redshift rare massive haloes falls nearly radially to their very centre on extremely short time-scales. This process results in the formation of very compact bulges with specific angular momentum a factor of 5-30 smaller than the average angular momentum of the baryons in the whole halo. Such low angular momentum originates from both segregation and effective cancellation when the gas flows to the centre of the halo along well-defined cold filamentary streams. These filaments penetrate deep inside the halo and connect to the bulge from multiple rapidly changing directions. Structures falling in along the filaments (satellite galaxies) or formed by gravitational instabilities triggered by the inflow (star clusters) further reduce the angular momentum of the gas in the bulge. Finally, the fraction of gas radially falling to the centre appears to increase with the mass of the halo; we argue that this is most likely due to an enhanced cancellation of angular momentum in rarer haloes which are fed by more isotropically distributed cold streams. Such an increasingly efficient funnelling of low angular momentum gas to the centre of very massive haloes at high redshift may account for the rapid pace at which the most massive supermassive black holes grow to reach observed masses around 10 9M ⊙ at an epoch when the Universe is barely 1 Gyr old. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.

The X-ray luminous cluster underlying the z = 1.04 quasar PKS1229-021

Monthly Notices of the Royal Astronomical Society 422 (2012) 590-599

HR Russell, AC Fabian, GB Taylor, JS Sanders, KM Blundell, CS Crawford, RM Johnstone, E Belsole

We present a 100ks Chandra observation studying the extended X-ray emission around the powerful z= 1.04 quasar PKS1229-021. The diffuse cluster X-ray emission can be traced out to ∼15arcsec (∼120kpc) radius and there is a drop in the calculated hardness ratio inside the central 5arcsec consistent with the presence of a cool core. Radio observations of the quasar show a strong core and a bright, one-sided jet leading to the south-west hotspot and a second hotspot visible on the counter-jet side. Although the wings of the quasar point spread function (PSF) provided a significant contribution to the total X-ray flux at all radii where the extended cluster emission was detected, we were able to accurately subtract the PSF emission using Chandra Ray Tracer and marx simulations. The resulting steep cluster surface brightness profile for PKS1229-021 appears similar to the profile for the FR II (Fanaroff-Riley class II) radio galaxy 3C444, which has a similarly rapid surface brightness drop caused by a powerful shock surrounding the radio lobes. Using a model surface brightness profile based on 3C444, we estimated the total cluster luminosity for PKS1229-021 to be. We discuss the difficulty of detecting cool-core clusters, which host bright X-ray sources, in high redshift surveys. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.

Measurements of radiative shock properties using X-ray Thomson scattering

IEEE International Conference on Plasma Science (2009)

A Visco, RP Drake, MJ Grosskopf, SH Glenzer, DH Froula, G Gregori

Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves.

Nature 481 (2012) 480-483

G Gregori, A Ravasio, CD Murphy, K Schaar, A Baird, AR Bell, A Benuzzi-Mounaix, R Bingham, C Constantin, RP Drake, M Edwards, ET Everson, CD Gregory, Y Kuramitsu, W Lau, J Mithen, C Niemann, HS Park, BA Remington, B Reville, AP Robinson, DD Ryutov, Y Sakawa, S Yang, NC Woolsey, M Koenig, F Miniati

The standard model for the origin of galactic magnetic fields is through the amplification of seed fields via dynamo or turbulent processes to the level consistent with present observations. Although other mechanisms may also operate, currents from misaligned pressure and temperature gradients (the Biermann battery process) inevitably accompany the formation of galaxies in the absence of a primordial field. Driven by geometrical asymmetries in shocks associated with the collapse of protogalactic structures, the Biermann battery is believed to generate tiny seed fields to a level of about 10(-21) gauss (refs 7, 8). With the advent of high-power laser systems in the past two decades, a new area of research has opened in which, using simple scaling relations, astrophysical environments can effectively be reproduced in the laboratory. Here we report the results of an experiment that produced seed magnetic fields by the Biermann battery effect. We show that these results can be scaled to the intergalactic medium, where turbulence, acting on timescales of around 700 million years, can amplify the seed fields sufficiently to affect galaxy evolution.

Testing quantum mechanics in non-Minkowski space-time with high power lasers and 4 th generation light sources

Scientific Reports 2 (2012)

BJB Crowley, R Bingham, RG Evans, DO Gericke, OL Landen, CD Murphy, PA Norreys, SJ Rose, T Tschentscher, CH-T Wang, JS Wark, G Gregori

A common misperception of quantum gravity is that it requires accessing energies up to the Planck scale of 10 19 GeV, which is unattainable from any conceivable particle collider. Thanks to the development of ultra-high intensity optical lasers, very large accelerations can be now the reached at their focal spot, thus mimicking, by virtue of the equivalence principle, a non Minkowski space-time. Here we derive a semiclassical extension of quantum mechanics that applies to different metrics, but under the assumption of weak gravity. We use our results to show that Thomson scattering of photons by uniformly accelerated electrons predicts an observable effect depending upon acceleration and local metric. In the laboratory frame, a broadening of the Thomson scattered x ray light from a fourth generation light source can be used to detect the modification of the metric associated to electrons accelerated in the field of a high power optical laser.

Characterizing counter-streaming interpenetrating plasmas relevant to astrophysical collisionless shocks

Physics of Plasmas 19 (2012)

JS Ross, SH Glenzer, P Amendt, R Berger, L Divol, NL Kugland, OL Landen, C Plechaty, B Remington, D Ryutov, W Rozmus, DH Froula, G Fiksel, C Sorce, Y Kuramitsu, T Morita, Y Sakawa, H Takabe, RP Drake, M Grosskopf, C Kuranz, G Gregori, J Meinecke, CD Murphy, M Koenig, A Pelka, A Ravasio, T Vinci, E Liang, R Presura, A Spitkovsky, F Miniati, H-S Park

A series of Omega experiments have produced and characterized high velocity counter-streaming plasma flows relevant for the creation of collisionless shocks. Single and double CH2 foils have been irradiated with a laser intensity of ∼ 1016 W/cm2. The laser ablated plasma was characterized 4 mm from the foil surface using Thomson scattering. A peak plasma flow velocity of 2000 km/s, an electron temperature of ∼ 110 eV, an ion temperature of ∼ 30 eV, and a density of ∼ 1018 cm -3 were measured in the single foil configuration. Significant increases in electron and ion temperatures were seen in the double foil geometry. The measured single foil plasma conditions were used to calculate the ion skin depth, c/ωpi ∼ 0.16 mm, the interaction length, lint, of ∼ 8 mm, and the Coulomb mean free path, λmfp ∼ 27 mm. With c/ωpi ≪ l int ≪λmfp, we are in a regime where collisionless shock formation is possible. © 2012 American Institute of Physics.

A study of fast electron energy transport in relativistically intense laser-plasma interactions with large density scalelengths

Physics of Plasmas 19 (2012)

RHH Scott, F Perez, JJ Santos, CP Ridgers, JR Davies, KL Lancaster, SD Baton, P Nicolai, RMGM Trines, AR Bell, S Hulin, M Tzoufras, SJ Rose, PA Norreys

A systematic experimental and computational investigation of the effects of three well characterized density scalelengths on fast electron energy transport in ultra-intense laser-solid interactions has been performed. Experimental evidence is presented which shows that, when the density scalelength is sufficiently large, the fast electron beam entering the solid-density plasma is best described by two distinct populations: those accelerated within the coronal plasma (the fast electron pre-beam) and those accelerated near or at the critical density surface (the fast electron main-beam). The former has considerably lower divergence and higher temperature than that of the main-beam with a half-angle of ∼20°. It contains up to 30% of the total fast electron energy absorbed into the target. The number, kinetic energy, and total energy of the fast electrons in the pre-beam are increased by an increase in density scalelength. With larger density scalelengths, the fast electrons heat a smaller cross sectional area of the target, causing the thinnest targets to reach significantly higher rear surface temperatures. Modelling indicates that the enhanced fast electron pre-beam associated with the large density scalelength interaction generates a magnetic field within the target of sufficient magnitude to partially collimate the subsequent, more divergent, fast electron main-beam. © 2012 American Institute of Physics.

Three-Dimensional Structure of Solar Wind Turbulence

ArXiv (2011)

CHK Chen, A Mallet, AA Schekochihin, TS Horbury, RT Wicks, SD Bale

We present a measurement of the scale-dependent, three-dimensional structure of the magnetic field fluctuations in inertial range solar wind turbulence with respect to a local, physically motivated coordinate system. The Alfvenic fluctuations are three-dimensionally anisotropic, with the sense of this anisotropy varying from large to small scales. At the outer scale, the magnetic field correlations are longest in the local fluctuation direction, consistent with Alfven waves. At the proton gyroscale, they are longest along the local mean field direction and shortest in the direction perpendicular to the local mean field and the local field fluctuation. The compressive fluctuations are highly elongated along the local mean field direction, although axially symmetric perpendicular to it. Their large anisotropy may explain why they are not heavily damped in the solar wind.



SA Kassin, BJ Weiner, SM Faber, JP Gardner, CNA Willmer, AL Coil, MC Cooper, J Devriendt, AA Dutton, P Guhathakurta, DC Koo, AJ Metevier, KG Noeske, JR Primack

Weak Alfvén-wave turbulence revisited.

Phys Rev E Stat Nonlin Soft Matter Phys 85 (2012) 036406-

AA Schekochihin, SV Nazarenko, TA Yousef

Weak Alfvénic turbulence in a periodic domain is considered as a mixed state of Alfvén waves interacting with the two-dimensional (2D) condensate. Unlike in standard treatments, no spectral continuity between the two is assumed, and, indeed, none is found. If the 2D modes are not directly forced, k(-2) and k(-1) spectra are found for the Alfvén waves and the 2D modes, respectively, with the latter less energetic than the former. The wave number at which their energies become comparable marks the transition to strong turbulence. For imbalanced energy injection, the spectra are similar, and the Elsasser ratio scales as the ratio of the energy fluxes in the counterpropagating Alfvén waves. If the 2D modes are forced, a 2D inverse cascade dominates the dynamics at the largest scales, but at small enough scales, the same weak and then strong regimes as described above are achieved.

Employing laser-accelerated proton beams to diagnose high intensity laser-plasma interactions

AIP Conference Proceedings 1462 (2012) 149-154

G Sarri, CA Cecchetti, K Quinn, PA Norreys, R Trines, O Willi, J Fuchs, P McKenna, M Quinn, F Pegoraro, SV Bulanov, M Borghesi

A review of the proton radiography technique will be presented. This technique employs laser-accelerated laminar bunches of protons to diagnose the temporal and spatial characteristic of the electric and magnetic fields generated during high-intensity laser-plasma interactions. The remarkable temporal and spatial resolution that this technique can achieve (of the order of a picosecond and a few microns respectively) candidates this technique as the preferrable one, if compared to other techniques, to probe high intensity laser-matterinteractions. © 2012 American Institute of Physics.

The study of parametric instabilities relevant to Laser-Plasma interactions in Fast Ignition

39th EPS Conference on Plasma Physics 2012, EPS 2012 and the 16th International Congress on Plasma Physics 2 (2012) 938-941

KA Humphrey, DC Speirs, M King, K Ronald, ADR Phelps, RA Cairns, R Bingham, R Trines, P Norreys, LO Silva, F Fiuza

Subcritical fluctuations and suppression of turbulence in differentially rotating gyrokinetic plasmas


AA Schekochihin, EG Highcock, SC Cowley

Zero-Turbulence Manifold in a Toroidal Plasma

ArXiv (2012)

EG Highcock, AA Schekochihin, SC Cowley, M Barnes, FI Parra, CM Roach, W Dorland

Sheared toroidal flows can cause bifurcations to zero-turbulent-transport states in tokamak plasmas. The maximum temperature gradients that can be reached are limited by subcritical turbulence driven by the parallel velocity gradient. Here it is shown that q/\epsilon (magnetic field pitch/inverse aspect ratio) is a critical control parameter for sheared tokamak turbulence. By reducing q/\epsilon, far higher temperature gradients can be achieved without triggering turbulence, in some instances comparable to those found experimentally in transport barriers. The zero-turbulence manifold is mapped out, in the zero-magnetic-shear limit, over the parameter space (\gamma_E, q/\epsilon, R/L_T), where \gamma_E is the perpendicular flow shear and R/L_T is the normalised inverse temperature gradient scale. The extent to which it can be constructed from linear theory is discussed.

Laser absorption in relativistically underdense plasmas by synchrotron radiation

Physical Review Letters 109 (2012) 245006

CS Brady, CP Ridgers, TD Arber, AR Bell, JG Kirk