JE Cross, B Reville, G Gregori

Do high-redshift quasars have powerful jets?


AC Fabian, SA Walker, A Celotti, G Ghisellini, P Mocz, KM Blundell, RG McMahon

Dancing in the dark: galactic properties trace spin swings along the cosmic web

ArXiv (2014)

Y Dubois, C Pichon, C Welker, DL Borgne, J Devriendt, C Laigle, S Codis, D Pogosyan, S Arnouts, K Benabed, E Bertin, J Blaizot, F Bouchet, J-F Cardoso, S Colombi, VD Lapparent, V Desjacques, R Gavazzi, S Kassin, T Kimm, H McCracken, B Milliard, S Peirani, S Prunet, S Rouberol, J Silk, A Slyz, T Sousbie, R Teyssier, L Tresse, M Treyer, D Vibert, M Volonteri

A large-scale hydrodynamical cosmological simulation, Horizon-AGN, is used to investigate the alignment between the spin of galaxies and the cosmic filaments above redshift 1.2. The analysis of more than 150 000 galaxies per time step in the redshift range 1.2<z<1.8 with morphological diversity shows that the spin of low-mass blue galaxies is preferentially aligned with their neighbouring filaments, while high-mass red galaxies tend to have a perpendicular spin. The reorientation of the spin of massive galaxies is provided by galaxy mergers, which are significant in their mass build-up. We find that the stellar mass transition from alignment to misalignment happens around 3.10^10 M_sun. Galaxies form in the vorticity-rich neighbourhood of filaments, and migrate towards the nodes of the cosmic web as they convert their orbital angular momentum into spin. The signature of this process can be traced to the properties of galaxies, as measured relative to the cosmic web. We argue that a strong source of feedback such as active galactic nuclei is mandatory to quench in situ star formation in massive galaxies and promote various morphologies. It allows mergers to play their key role by reducing post-merger gas inflows and, therefore, keeping spins misaligned with cosmic filaments.

Electron-ion equilibration in ultrafast heated graphite.

Physical review letters 112 (2014) 145005-

TG White, NJ Hartley, B Borm, BJ Crowley, JW Harris, DC Hochhaus, T Kaempfer, K Li, P Neumayer, LK Pattison, F Pfeifer, S Richardson, AP Robinson, I Uschmann, G Gregori

We have employed fast electrons produced by intense laser illumination to isochorically heat thermal electrons in solid density carbon to temperatures of ∼10,000  K. Using time-resolved x-ray diffraction, the temperature evolution of the lattice ions is obtained through the Debye-Waller effect, and this directly relates to the electron-ion equilibration rate. This is shown to be considerably lower than predicted from ideal plasma models. We attribute this to strong ion coupling screening the electron-ion interaction.

Fast electron energy transport in solid density and compressed plasma

NUCLEAR FUSION 54 (2014) ARTN 054004

P Norreys, D Batani, S Baton, FN Beg, R Kodama, PM Nilson, P Patel, F Perez, JJ Santos, RHH Scott, VT Tikhonchuk, M Wei, J Zhang

Constraining the Galaxy's dark halo with RAVE stars


T Piffl, J Binney, PJ McMillan, M Steinmetz, A Helmi, RFG Wyse, O Bienayme, J Bland-Hawthorn, K Freeman, B Gibson, G Gilmore, EK Grebel, G Kordopatis, JF Navarro, Q Parker, WA Reid, G Seabroke, A Siebert, F Watson, T Zwitter

Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

ArXiv (2014)

I Collaboration, MG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, D Altmann, T Anderson, C Arguelles, TC Arlen, J Auffenberg, X Bai, SW Barwick, V Baum, R Bay, JJ Beatty, JB Tjus, K-H Becker, S BenZvi, P Berghaus, D Berley, E Bernardini, A Bernhard, DZ Besson, G Binder, D Bindig, M Bissok, E Blaufuss, J Blumenthal, DJ Boersma, C Bohm, F Bos, D Bose, S Böser, O Botner, L Brayeur, H-P Bretz, AM Brown, J Brunner, N Buzinsky, J Casey, M Casier, E Cheung, D Chirkin, A Christov, B Christy, K Clark, L Classen, F Clevermann, S Coenders, DF Cowen, AHC Silva, J Daughhetee, JC Davis, M Day, JPAMD André, CD Clercq, SD Ridder, P Desiati, KDD Vries, MD With, T DeYoung, JC Díaz-Vélez, M Dunkman, R Eagan, B Eberhardt, B Eichmann, J Eisch, S Euler, PA Evenson, O Fadiran, AR Fazely, A Fedynitch, J Feintzeig, J Felde, T Feusels, K Filimonov, C Finley, T Fischer-Wasels, S Flis, A Franckowiak, K Frantzen, T Fuchs, TK Gaisser, R Gaior, J Gallagher, L Gerhardt, D Gier, L Gladstone, T Glüsenkamp, A Goldschmidt, G Golup, JG Gonzalez, JA Goodman, D Góra, D Grant, P Gretskov, JC Groh, A Groß, C Ha, C Haack, AH Ismail, P Hallen, A Hallgren, F Halzen, K Hanson, D Hebecker, D Heereman, D Heinen, K Helbing, R Hellauer, D Hellwig, S Hickford, GC Hill, KD Hoffman, R Hoffmann, A Homeier, K Hoshina, F Huang, W Huelsnitz, PO Hulth, K Hultqvist, S Hussain, A Ishihara, E Jacobi, J Jacobsen, GS Japaridze, K Jero, O Jlelati, M Jurkovic, B Kaminsky, A Kappes, T Karg, A Karle, M Kauer, A Keivani, JL Kelley, A Kheirandish, J Kiryluk, J Kläs, SR Klein, J-H Köhne, G Kohnen, H Kolanoski, A Koob, L Köpke, C Kopper, S Kopper, DJ Koskinen, M Kowalski, A Kriesten, K Krings, G Kroll, M Kroll, J Kunnen, N Kurahashi, T Kuwabara, M Labare, JL Lanfranchi, DT Larsen, MJ Larson, M Lesiak-Bzdak, M Leuermann, J Lünemann, J Madsen, G Maggi, R Maruyama, K Mase, HS Matis, R Maunu, F McNally, K Meagher, M Medici, A Meli, T Meures, S Miarecki, E Middell, E Middlemas, N Milke, J Miller, L Mohrmann, T Montaruli, R Morse, R Nahnhauer, U Naumann, H Niederhausen, SC Nowicki, DR Nygren, A Obertacke, S Odrowski, A Olivas, A Omairat, A O'Murchadha, T Palczewski, L Paul, Ö Penek, JA Pepper, CPDL Heros, C Pfendner, D Pieloth, E Pinat, J Posselt, PB Price, GT Przybylski, J Pütz, M Quinnan, L Rädel, M Rameez, K Rawlins, P Redl, I Rees, R Reimann, M Relich, E Resconi, W Rhode, M Richman, B Riedel, S Robertson, JP Rodrigues, M Rongen, C Rott, T Ruhe, B Ruzybayev, D Ryckbosch, SM Saba, H-G Sander, J Sandroos, M Santander, S Sarkar, K Schatto, F Scheriau, T Schmidt, M Schmitz, S Schoenen, S Schöneberg, A Schönwald, A Schukraft, L Schulte, O Schulz, D Seckel, Y Sestayo, S Seunarine, R Shanidze, MWE Smith, D Soldin, GM Spiczak, C Spiering, M Stamatikos, T Stanev, NA Stanisha, A Stasik, T Stezelberger, RG Stokstad, A Stößl, EA Strahler, R Ström, NL Strotjohann, GW Sullivan, H Taavola, I Taboada, A Tamburro, A Tepe, S Ter-Antonyan, A Terliuk, G Tešić, S Tilav, PA Toale, MN Tobin, D Tosi, M Tselengidou, E Unger, M Usner, S Vallecorsa, NV Eijndhoven, J Vandenbroucke, JV Santen, M Vehring, M Voge, M Vraeghe, C Walck, M Wallraff, C Weaver, M Wellons, C Wendt, S Westerhoff, BJ Whelan, N Whitehorn, C Wichary, K Wiebe, CH Wiebusch, DR Williams, H Wissing, M Wolf, TR Wood, K Woschnagg, DL Xu, XW Xu, JP Yanez, G Yodh, S Yoshida, P Zarzhitsky, J Ziemann, M Zoll

We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10\,GeV and 100\,GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by $\Delta m^2_{32}=2.72^{+0.19}_{-0.20}\times 10^{-3}\,\mathrm{eV}^2$ and $\sin^2\theta_{23} = 0.53^{+0.09}_{-0.12}$ (normal mass hierarchy assumed). The results are compatible and comparable in precision to those of dedicated oscillation experiments.

Observations of strong ion-ion correlations in dense plasmas

PHYSICS OF PLASMAS 21 (2014) ARTN 056302

T Ma, L Fletcher, A Pak, DA Chapman, RW Falcone, C Fortmann, E Galtier, DO Gericke, G Gregori, J Hastings, OL Landen, S Le Pape, HJ Lee, B Nagler, P Neumayer, D Turnbull, J Vorberger, TG White, K Wuensch, U Zastrau, SH Glenzer, T Doeppner

Alternative ignition schemes in inertial confinement fusion

Nuclear Fusion 54 (2014)

M Tabak, PA Norreys, VT Tikhonchuk, K Tanaka

This paper presents a short overview of a series of review articles describing alternative approaches to ignition of fusion reactions in inertially confined plasmas. © 2014 IAEA, Vienna.

New distances to RAVE stars

ArXiv (2013)

J Binney, B Burnett, G Kordopatis, PJ McMillan, S Sharma, T Zwitter, O Bienayme, J Bland-Hawthorn, M Steinmetz, G Gilmore, MEK Williams, J Navarro, EK Grebel, A Helmi, Q Parker, WA Reid, G Seabroke, F Watson, RFG Wyse

Probability density functions are determined from new stellar parameters for the distance moduli of stars for which the RAdial Velocity Experiment (RAVE) has obtained spectra with S/N>=10. Single-Gaussian fits to the pdf in distance modulus suffice for roughly half the stars, with most of the other half having satisfactory two-Gaussian representations. As expected, early-type stars rarely require more than one Gaussian. The expectation value of distance is larger than the distance implied by the expectation of distance modulus; the latter is itself larger than the distance implied by the expectation value of the parallax. Our parallaxes of Hipparcos stars agree well with the values measured by Hipparcos, so the expectation of parallax is the most reliable distance indicator. The latter are improved by taking extinction into account. The effective temperature absolute-magnitude diagram of our stars is significantly improved when these pdfs are used to make the diagram. We use the method of kinematic corrections devised by Schoenrich, Binney & Asplund to check for systematic errors for general stars and confirm that the most reliable distance indicator is the expectation of parallax. For cool dwarfs and low-gravity giants <pi> tends to be larger than the true distance by up to 30 percent. The most satisfactory distances are for dwarfs hotter than 5500 K. We compare our distances to stars in 13 open clusters with cluster distances from the literature and find excellent agreement for the dwarfs and indications that we are over-estimating distances to giants, especially in young clusters.

Reduction of core turbulence in I-mode plasmas in Alcator C-Mod

NUCLEAR FUSION 54 (2014) ARTN 083019

AE White, M Barnes, A Dominguez, M Greenwald, NT Howard, AE Hubbard, JW Hughes, DR Mikkelsen, FI Parra, ML Reinke, C Sung, J Walk, DG Whyte



S Sharma, J Bland-Hawthorn, J Binney, KC Freeman, M Steinmetz, C Boeche, O Bienayme, BK Gibson, GF Gilmore, EK Grebel, A Helmi, G Kordopatis, U Munari, JF Navarro, QA Parker, WA Reid, GM Seabroke, A Siebert, F Watson, MEK Williams, RFG Wyse, T Zwitter

Introducing the CTA concept


BS Acharya, M Actis, T Aghajani, G Agnetta, J Aguilar, F Aharonian, M Ajello, A Akhperjanian, M Alcubierre, J Aleksic, R Alfaro, E Aliu, AJ Allafort, D Allan, I Allekotte, E Amato, J Anderson, EO Anguener, LA Antonelli, P Antoranz, A Aravantinos, T Arlen, T Armstrong, H Arnaldi, L Arrabito, K Asano, T Ashton, HG Asorey, Y Awane, H Baba, A Babic, N Baby, J Baehr, A Bais, C Baixeras, S Bajtlik, M Balbo, D Balis, C Balkowski, A Bamba, R Bandiera, A Barber, C Barbier, M Barcelo, A Barnacka, J Barnstedt, U Barres de Almeida, JA Barrio, A Basili, S Basso, D Bastieri, C Bauer, A Baushev, J Becerra, Y Becherini, KC Bechtol, JB Tjus, V Beckmann, W Bednarek, B Behera, M Belluso, W Benbow, J Berdugo, K Berger, F Bernard, T Bernardino, K Bernloehr, N Bhat, S Bhattacharyya, C Bigongiari, A Biland, S Billotta, T Bird, E Birsin, E Bissaldi, J Biteau, M Bitossi, S Blake, O Blanch Bigas, P Blasi, A Bobkov, V Boccone, M Boettcher, L Bogacz, J Bogart, M Bogdan, C Boisson, J Boix Gargallo, J Bolmont, G Bonanno, A Bonardi, T Bonev, P Bonifacio, G Bonnoli, P Bordas, A Borgland, J Borkowski, R Bose, O Botner, A Bottani, L Bouchet, M Bourgeat, C Boutonnet, A Bouvier, S Brau-Nogue, I Braun, T Bretz, M Briggs, T Bringmann, P Brook, P Brun, L Brunetti, T Buanes, J Buckley, R Buehler, V Bugaev, A Bulgarelli, T Bulik, G Busetto, S Buson, K Byrum, M Cailles, R Cameron, J Camprecios, R Canestrari, S Cantu, M Capalbi, P Caraveo, E Carmona, A Carosi, J Carr, P-H Carton, S Casanova, M Casiraghi, O Catalano, S Cavazzani, S Cazaux, M Cerruti, E Chabanne, P Chadwick, C Champion, A Chen, J Chiang, L Chiappetti, M Chikawa, VR Chitnis, F Chollet, J Chudoba, M Cieslar, A Cillis, J Cohen-Tanugi, S Colafrancesco, P Colin, J Calome, S Colonges, M Compin, P Conconi, V Conforti, V Connaughton, J Conrad, JL Contreras, P Coppi, P Corona, D Corti, J Cortina, L Cossio, H Costantini, G Cotter, B Courty, S Couturier, S Covino, G Crimi, SJ Criswell, J Croston, G Cusumano, M Dafonseca, O Dale, M Daniel, J Darling, I Davids, F Dazzi, A De Angelis, V De Caprio, F De Frondat, EM de Gouveia Dal Pino, I de la Calle, GA De La Vega, RDLR Lopez, B De Lotto, A De Luca, JRT de Mello Neto, M de Naurois, Y de Oliveira, E de Ona Wilhelmi, V de Souza, G Decerprit, G Decock, C Deil, E Delagnes, G Deleglise, C Delgado, D Della Volpe, P Demange, G Depaola, A Dettlaff, A Di Paola, F Di Pierro, C Diaz, J Dick, R Dickherber, H Dickinson, V Diez-Blanco, S Digel, D Dimitrov, G Disset, A Djannati-Atai, M Doert, M Dohmke, W Domainko, DD Prester, A Donat, D Dorner, M Doro, J-L Dournaux, G Drake, D Dravins, L Drury, F Dubois, R Dubois, G Dubus, C Dufour, D Dumas, J Dumm, D Durand, J Dyks, M Dyrda, J Ebr, E Edy, K Egberts, P Eger, S Einecke, C Eleftheriadis, S Elles, D Emmanoulopoulos, D Engelhaupt, R Enomoto, J-P Ernenwein, M Errando, A Etchegoyen, P Evans, A Falcone, D Fantinel, K Farakos, C Farnier, G Fasola, B Favill, E Fede, S Federici, S Fegan, F Feinstein, D Ferenc, P Ferrando, M Fesquet, A Fiasson, E Fillin-Martino, D Fink, C Finley, JP Finley, M Fiorini, R Firpo Curcoll, H Flores, D Florin, W Focke, C Foehr, E Fokitis, L Font, G Fontaine, M Fornasa, A Foerster, L Fortson, N Fouque, A Franckowiak, C Fransson, G Fraser, R Frei, IFM Albuquerque, L Fresnillo, C Fruck, Y Fujita, Y Fukazawa, Y Fukui, S Funk, W Gaebele, S Gabici, R Gabriele, A Gadola, N Galante, D Gall, Y Gallant, J Gamez-Garcia, B Garcia, R Garcia Lopez, D Gardiol, D Garrido, L Garrido, D Gascon, M Gaug, J Gaweda, L Gebremedhin, N Geffroy, L Gerard, A Ghedina, M Ghigo, E Giannakaki, F Gianotti, S Giarrusso, G Giavitto, B Giebels, V Gika, P Giommi, N Girard, E Giro, A Giuliani, T Glanzman, J-F Glicenstein, N Godinovic, V Golev, M Gomez Berisso, J Gomez-Ortega, MM Gonzalez, A Gonzalez, F Gonzalez, A Gonzalez Munoz, KS Gothe, M Gougerot, R Graciani, P Grandi, F Granena, J Granot, G Grasseau, R Gredig, A Green, T Greenshaw, T Gregoire, O Grimm, J Grube, M Grudzinska, V Gruev, S Gruenewald, J Grygorczuk, V Guarino, S Gunji, G Gyuk, D Hadasch, R Hagiwara, J Hahn, N Hakansson, A Hallgren, N Hamer Heras, S Hara, MJ Hardcastle, J Harris, T Hassan, K Hatanaka, T Haubold, A Haupt, T Hayakawa, M Hayashida, R Heller, F Henault, G Henri, G Hermann, R Hermel, A Herrero, N Hidaka, J Hinton, D Hoffmann, W Hofmann, P Hofverberg, J Holder, D Horns, D Horville, J Houles, M Hrabovsky, D Hrupec, H Huan, B Huber, J-M Huet, G Hughes, TB Humensky, J Huovelin, A Ibarra, JM Illa, D Impiombato, S Incorvaia, S Inoue, Y Inoue, K Ioka, E Ismailova, C Jablonski, A Jacholkowska, M Jamrozy, M Janiak, P Jean, C Jeanney, JJ Jimenez, T Jogler, T Johnson, L Journet, C Juffroy, I Jung, P Kaaret, S Kabuki, M Kagaya, J Kakuwa, C Kalkuhl, R Kankanyan, A Karastergiou, K Kaercher, M Karczewski, S Karkar, A Kasperek, D Kastana, H Katagiri, J Kataoka, K Katarzynski, U Katz, N Kawanaka, B Kellner-Leidel, H Kelly, E Kendziorra, B Khelifi, DB Kieda, T Kifune, T Kihm, T Kishimoto, K Kitamoto, W Kluzniak, C Knapic, JW Knapp, J Knoedlseder, F Koeck, J Kocot, K Kodani, J-H Koehne, K Kohri, K Kokkotas, D Kolitzus, N Komin, I Kominis, Y Konno, H Koeppel, P Korohoda, K Kosack, G Koss, R Kossakowski, P Kostka, R Koul, G Kowal, S Koyama, J Koziol, T Kraehenbuehl, J Krause, H Krawzcynski, F Krennrich, A Krepps, A Kretzschmann, R Krobot, P Krueger, H Kubo, VA Kudryavtsev, J Kushida, A Kuznetsov, A La Barbera, N La Palombara, V La Parola, G La Rosa, K Lacombe, G Lamanna, J Lande, D Languignon, J Lapington, P Laporte, C Lavalley, T Le Flour, A Le Padellec, S-H Lee, WH Lee, MA Leigui de Oliveira, D Lelas, J-P Lenain, DJ Leopold, T Lerch, L Lessio, B Lieunard, E Lindfors, A Liolios, A Lipniacka, H Lockart, T Lohse, S Lombardi, A Lopatin, M Lopez, R Lopez-Coto, A Lopez-Oramas, A Lorca, E Lorenz, P Lubinski, F Lucarelli, H Luedecke, J Ludwin, PL Luque-Escamilla, W Lustermann, O Luz, E Lyard, MC Maccarone, TJ Maccarone, GM Madejski, A Madhavan, M Mahabir, G Maier, P Majumdar, G Malaguti, S Maltezos, A Manalaysay, A Mancilla, D Mandat, G Maneva, A Mangano, P Manigot, K Mannheim, I Manthos, N Maragos, A Marcowith, M Mariotti, M Marisaldi, S Markoff, A Marszalek, C Martens, J Marti, J-M Martin, P Martin, G Martinez, F Martinez, M Martinez, A Masserot, A Mastichiadis, A Mathieu, H Matsumoto, F Mattana, S Mattiazzo, G Maurin, S Maxfield, J Maya, D Mazin, L Mc Comb, N McCubbin, I McHardy, R McKay, C Medina, C Melioli, D Melkumyan, S Mereghetti, P Mertsch, M Meucci, J Michalowski, P Micolon, A Mihailidis, T Mineo, M Minuti, N Mirabal, F Mirabel, JM Miranda, R Mirzoyan, T Mizuno, B Moal, R Moderski, I Mognet, E Molinari, M Molinaro, T Montaruli, I Monteiro, P Moore, A Moralejo Olaizola, M Mordalska, C Morello, K Mori, F Mottez, Y Moudden, E Moulin, I Mrusek, R Mukherjee, P Munar-Adrover, H Muraishi, K Murase, A Murphy, S Nagataki, T Naito, D Nakajima, T Nakamori, K Nakayama, C Naumann, D Naumann, M Naumann-Godo, P Nayman, D Nedbal, D Neise, L Nellen, V Neustroev, N Neyroud, L Nicastro, J Nicolau-Kuklinski, A Niedzwiecki, J Niemiec, D Nieto, A Nikolaidis, K Nishijima, S Nolan, R Northrop, D Nosek, N Nowak, A Nozato, P O'Brien, Y Ohira, M Ohishi, S Ohm, H Ohoka, T Okuda, A Okumura, J-F Olive, RA Ong, R Orito, M Orr, J Osborne, M Ostrowski, LA Otero, N Otte, E Ovcharov, I Oya, A Ozieblo, L Padilla, S Paiano, D Paillot, A Paizis, S Palanque, M Palatka, J Pallota, K Panagiotidis, J-L Panazol, D Paneque, M Panter, R Paoletti, A Papayannis, G Papyan, JM Paredes, G Pareschi, G Parks, J-M Parraud, D Parsons, MP Arribas, M Pech, G Pedaletti, V Pelassa, D Pelat, MDC Perez, M Persic, P-O Petrucci, B Peyaud, A Pichel, S Pita, F Pizzolato, L Platos, R Platzer, L Pogosyan, M Pohl, G Pojmanski, JD Ponz, W Potter, J Poutanen, E Prandini, J Prast, R Preece, F Profeti, H Prokoph, M Prouza, M Proyetti, I Puerto-Gimenez, G Puehlhofer, I Puljak, M Punch, R Pyziol, EJ Quel, J Quinn, A Quirrenbach, E Racero, PJ Rajda, P Ramon, R Rando, RC Rannot, M Rataj, M Raue, P Reardon, O Reimann, A Reimer, O Reimer, K Reitberger, M Renaud, S Renner, B Reville, W Rhode, M Ribo, M Ribordy, MG Richer, J Rico, J Ridky, F Rieger, P Ringegni, J Ripken, PR Ristori, A Riviere, S Rivoire, L Rob, U Roeser, R Rohlfs, G Rojas, P Romano, W Romaszkan, GE Romero, S Rosen, SR Lees, D Ross, G Rouaix, J Rousselle, S Rousselle, AC Rovero, F Roy, S Royer, B Rudak, C Rulten, M Rupinski, F Russo, F Ryde, B Sacco, EO Saemann, A Saggion, V Safiakian, K Saito, T Saito, Y Saito, N Sakaki, R Sakonaka, A Salini, F Sanchez, M Sanchez-Conde, A Sandoval, H Sandaker, E Sant'Ambrogio, A Santangelo, EM Santos, A Sanuy, L Sapozhnikov, S Sarkar, N Sartore, H Sasaki, K Satalecka, M Sawada, V Scalzotto, V Scapin, M Scarcioffolo, J Schafer, T Schanz, S Schlenstedt, R Schlickeiser, T Schmidt, J Schmoll, P Schovanek, M Schroedter, C Schultz, J Schultze, A Schulz, K Schure, T Schwab, U Schwanke, J Schwarz, S Schwarzburg, T Schweizer, S Schwemmer, A Segreto, J-H Seiradakis, GH Sembroski, K Seweryn, M Sharma, M Shayduk, RC Shellard, J Shi, T Shibata, A Shibuya, E Shum, L Sidoli, M Sidz, J Sieiro, M Sikora, J Silk, A Sillanpaa, BB Singh, J Sitarek, C Skole, R Smareglia, A Smith, D Smith, J Smith, N Smith, D Sobczynska, H Sol, G Sottile, M Sowinski, F Spanier, D Spiga, S Spyrou, V Stamatescu, A Stamerra, R Starling, L Stawarz, R Steenkamp, C Stegmann, S Steiner, N Stergioulas, R Sternberger, M Sterzel, F Stinzing, M Stodulski, U Straumann, E Strazzeri, L Stringhetti, A Suarez, M Suchenek, R Sugawara, K-H Sulanke, S Sun, AD Supanitsky, T Suric, P Sutcliffe, J Sykes, M Szanecki, T Szepieniec, A Szostek, G Tagliaferri, H Tajima, H Takahashi, K Takahashi, L Takalo, H Takami, C Talbot, J Tammi, M Tanaka, S Tanaka, J Tasan, M Tavani, J-P Tavernet, LA Tejedor, I Telezhinsky, P Temnikov, C Tenzer, Y Terada, R Terrier, M Teshima, V Testa, D Tezier, D Thuermann, L Tibaldo, O Tibolla, A Tiengo, M Tluczykont, CJ Todero Peixoto, F Tokanai, M Tokarz, K Toma, K Torii, M Tornikoski, DF Torres, M Torres, G Tosti, T Totani, C Toussenel, G Tovmassian, P Travnicek, M Trifoglio, I Troyano, K Tsinganos, H Ueno, K Umehara, SS Upadhya, T Usher, M Uslenghi, JF Valdes-Galicia, P Vallania, G Vallejo, W van Driel, C van Eldik, J Vandenbrouke, J Vanderwalt, H Vankov, G Vasileiadis, V Vassiliev, D Veberic, I Vegas, S Vercellone, S Vergani, C Veyssiere, JP Vialle, A Viana, M Videla, P Vincent, S Vincent, J Vink, N Vlahakis, L Vlahos, P Vogler, A Vollhardt, H-P von Gunten, S Vorobiov, C Vuerli, V Waegebaert, R Wagner, RG Wagner, S Wagner, SP Wakely, R Walter, T Walther, K Warda, R Warwick, P Wawer, R Wawrzaszek, N Webb, P Wegner, A Weinstein, Q Weitzel, R Welsing, M Werner, H Wetteskind, R White, A Wierzcholska, S Wiesand, M Wilkinson, DA Williams, R Willingale, K Winiarski, R Wischnewski, L Wisniewski, M Wood, A Woernlein, Q Xiong, KK Yadav, H Yamamoto, T Yamamoto, R Yamazaki, S Yanagita, JM Yebras, D Yelos, A Yoshida, T Yoshida, T Yoshikoshi, V Zabalza, M Zacharias, A Zajczyk, R Zanin, A Zdziarski, A Zech, A Zhao, X Zhou, K Zietara, J Ziolkowski, P Ziolkowski, V Zitelli, C Zurbach, P Zychowski, CTA Consortium

Measurement of Atmospheric Neutrino Oscillations with IceCube

ArXiv (2013)

TI Collaboration

We present the first statistically significant detection of neutrino oscillations in the high-energy regime ($>$ 20 GeV) from an analysis of IceCube Neutrino Observatory data collected in 2010-2011. This measurement is made possible by the low energy threshold of the DeepCore detector ($\sim 20$ GeV) and benefits from the use of the IceCube detector as a veto against cosmic ray-induced muon background. The oscillation signal was detected within a low-energy muon neutrino sample (20 -- 100 GeV) extracted from data collected by DeepCore. A high-energy muon neutrino sample (100 GeV -- 10 TeV) was extracted from IceCube data to constrain systematic uncertainties. Disappearance of low-energy upward-going muon neutrinos was observed, and the non-oscillation hypothesis is rejected with more than $5\sigma$ significance. In a two-neutrino flavor formalism, our data are best described by the atmospheric neutrino oscillation parameters $\Delta m^2_{23}= (2.3^{+0.6}_{-0.5})\cdot 10^{-3}$ eV$^2$ and $\sin^2(2 \theta_{23})>0.93$, and maximum mixing is favored.

Pair plasma cushions in the hole-boring scenario

Plasma Physics and Controlled Fusion 55 (2013)

JG Kirk, AR Bell, CP Ridgers

Pulses from a 10 PW laser are predicted to produce large numbers of gamma-rays and electron-positron pairs on hitting a solid target. However, a pair plasma, if it accumulates in front of the target, may partially shield it from the pulse. Using stationary, one-dimensional solutions of the two-fluid (electron-positron) and Maxwell equations, including a classical radiation reaction term, we examine this effect in the hole-boring scenario. We find the collective effects of a pair plasma 'cushion' substantially reduce the reflectivity, converting the absorbed flux into high-energy gamma-rays. There is also a modest increase in the laser intensity needed to achieve threshold for a non-linear pair cascade. © 2013 IOP Publishing Ltd.

Ultrahigh Energy Neutrinos at the Pierre Auger Observatory

ArXiv (2013)

PA Collaboration

The observation of ultrahigh energy (UHE) neutrinos has become a priority in experimental astroparticle physics. UHE neutrinos can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going neutrinos) or in the Earth crust (Earth-skimming neutrinos), producing air showers that can be observed with arrays of detectors at the ground. With the Surface Detector Array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e. after having traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHE neutrinos in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHE neutrinos in the EeV range and above.

Cosmic ray acceleration in young supernova remnants

Monthly Notices of the Royal Astronomical Society 435 (2013) 1174-1185

KM Schure, AR Bell

We investigate the appearance of magnetic field amplification resulting from a cosmic ray escape current in the context of supernova remnant shock waves. The current is inversely proportional to the maximum energy of cosmic rays, and is a strong function of the shock velocity. Depending on the evolution of the shock wave, which is drastically different for different circumstellar environments, the maximum energy of cosmic rays as required to generate enough current to trigger the non-resonant hybrid instability that confines the cosmic rays follows a different evolution and reaches different values.We find that the best candidates to accelerate cosmic rays to ~ few PeV energies are young remnants in a dense environment, such as a red supergiant wind, as may be applicable to Cassiopeia A. We also find that for a typical background magnetic field strength of 5 μG the instability is quenched in about 1000 years, making SN1006 just at the border of candidates for cosmic ray acceleration to high energies. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Simulation of X-ray scattering diagnostics in multi-dimensional plasma

High Energy Density Physics 9 (2013) 510-515

IE Golovkin, JJ MacFarlane, PR Woodruff, IM Hall, G Gregori, JE Bailey, EC Harding, T Ao, SH Glenzer

X-ray scattering is a powerful diagnostic technique that has been used in a variety of experimental settings to determine the temperature, density, and ionization state of warm dense matter. In order to maximize the intensity of the scattered signal, the x-ray source is often placed in close proximity to the target plasma. Therefore, the interpretation of the experimental data can become complicated by the fact that the detector records photons scattered at different angles from points within the plasma volume. In addition, the target plasma that is scattering the x-rays can have significant temperature and density gradients. To address these issues, we have developed the capability to simulate x-ray scattering for realistic experimental configurations where the effects of plasma non-uniformities and a range of x-ray scattering angles are included. We will discuss the implementation details and show results relevant to previous and ongoing experimental investigations. © 2013 Elsevier B.V.

Fast electron beam measurements from relativistically intense, frequency-doubled laser-solid interactions

New Journal of Physics 15 (2013)

RHH Scott, FN Pérez, MJV Streeter, EL Clark, JR Davies, HP Schlenvoigt, JJ Santos, S Hulin, KL Lancaster, F Dorchies, C Fourment, B Vauzour, AA Soloviev, SD Baton, SJ Rose, PA Norreys

Experimental measurements of the fast electron beam created by the interaction of relativistically intense, frequency-doubled laser light with planar solid targets and its subsequent transport within the target are presented and compared with those of a similar experiment using the laser fundamental frequency. Using frequency-doubled laser light, the fast electron source size is significantly reduced, while evidence suggests the divergence angle may be reduced. Pyrometric measurements of the target rear surface temperature and the Cu Kα imager data indicate the laser to fast electron absorption fraction is reduced using frequency doubled laser light. Bremsstrahlung measurements indicate the fast electron temperature is 125 keV, while the laser energy absorbed into forward-going fast electrons was found to be 16 ± 4% for frequency doubled light at a mean laser intensity of 5 ± 3 × 1018 W cm-2. © IOP Publishing and Deutsche Physikalische Gesellschaft.

Analysing surveys of our Galaxy - II. Determining the potential


PJ McMillan, JJ Binney