Publications


Turbulent dynamo in a collisionless plasma.

Proceedings of the National Academy of Sciences of the United States of America 113 (2016) 3950-3953

F Rincon, F Califano, AA Schekochihin, F Valentini

Magnetic fields pervade the entire universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times (up to microgauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions, and on scales of at least tens of kiloparsecs) are major puzzles largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context; however, extragalactic plasmas are weakly collisional (as opposed to magnetohydrodynamic fluids), and whether magnetic field growth and sustainment through an efficient turbulent dynamo instability are possible in such plasmas is not established. Fully kinetic numerical simulations of the Vlasov equation in a 6D-phase space necessary to answer this question have, until recently, remained beyond computational capabilities. Here, we show by means of such simulations that magnetic field amplification by dynamo instability does occur in a stochastically driven, nonrelativistic subsonic flow of initially unmagnetized collisionless plasma. We also find that the dynamo self-accelerates and becomes entangled with kinetic instabilities as magnetization increases. The results suggest that such a plasma dynamo may be realizable in laboratory experiments, support the idea that intracluster medium turbulence may have significantly contributed to the amplification of cluster magnetic fields up to near-equipartition levels on a timescale shorter than the Hubble time, and emphasize the crucial role of multiscale kinetic physics in high-energy astrophysical plasmas.


Sensitivity of detachment extent to magnetic configuration and external parameters

Nuclear Fusion 56 (2016)

B Lipschultz, FI Parra, IH Hutchinson

© 2016 IAEA, Vienna.Divertor detachment may be essential to reduce heat loads to magnetic fusion tokamak reactor divertor surfaces. Yet in experiments it is difficult to control the extent of the detached, low pressure, plasma region. At maximum extent the front edge of the detached region reaches the X-point and can lead to degradation of core plasma properties. We define the 'detachment window' in a given position control variable C (for example, the upstream plasma density) as the range in C within which the front location can be stably held at any position from the target to the X-point; increased detachment window corresponds to better control. We extend a 1D analytic model [1] to determine the detachment window for the following control variables: the upstream plasma density, the impurity concentration and the power entering the scrape-off layer (SOL). We find that variations in magnetic configuration can have strong effects; increasing the ratio of the total magnetic field at the X-point to that at the target,Bx/Bt, (total flux expansion, as in the super-x divertor configuration) strongly increases the detachment window for all control variables studied, thus strongly improving detachment front control and the capability of the divertor plasma to passively accommodate transients while still staying detached. Increasing flux tube length and thus volume in the divertor, through poloidal flux expansion (as in the snowflake or x-divertor configurations) or length of the divertor, also increases the detachment window, but less than the total flux expansion does. The sensitivity of the detachment front location, zh, to each control variable, C, defined as , depends on the magnetic configuration. The size of the radiating volume and the total divertor radiation increase ∝ (Bx/Bt)2 and ∝ Bx/Bt, respectively, but not by increasing divertor poloidal flux expansion or field line length. We believe this model is applicable more generally to any thermal fronts in flux tubes with varying magnetic field, and similar sources and sinks, such as detachment fronts in stellarator divertors and solar prominences in coronal loops.


Parallel impurity dynamics in the TJ-II stellarator

Plasma Physics and Controlled Fusion 58 (2016)

JA Alonso, JL Velasco, I Calvo, T Estrada, JM Fontdecaba, JM García-Regaña, J Geiger, M Landreman, KJ McCarthy, F Medina, BP Van Milligen, MA Ochando, FI Parra

© 2016 IOP Publishing Ltd.We review in a tutorial fashion some of the causes of impurity density variations along field lines and radial impurity transport in the moment approach framework. An explicit and compact form of the parallel inertia force valid for arbitrary toroidal geometry and magnetic coordinates is derived and shown to be non-negligible for typical TJ-II plasma conditions. In the second part of the article, we apply the fluid model including main ion-impurity friction and inertia to observations of asymmetric emissivity patterns in neutral beam heated plasmas of the TJ-II stellarator. The model is able to explain qualitatively several features of the radiation asymmetry, both in stationary and transient conditions, based on the calculated in-surface variations of the impurity density.


A laboratory model of post-Newtonian gravity with high power lasers and 4th generation light sources

Classical and Quantum Gravity 33 (2016)

G Gregori, MC Levy, MA Wadud, BJB Crowley, R Bingham

© 2016 IOP Publishing Ltd.Using the post-Newtonian formalism of gravity, we attempt to calculate the x-ray Thomson scattering cross section of electrons that are accelerated in the field of a high intensity optical laser. We show that our results are consistent with previous calculations, suggesting that the combination of high power laser and 4th generation light sources may become a powerful platform to test models exploring high order corrections to the Newtonian gravity.


Model experiment of magnetic field amplification in laser-produced plasmas via the Richtmyer-Meshkov instability

Physics of Plasmas 23 (2016)

Y Kuramitsu, N Ohnishi, Y Sakawa, T Morita, H Tanji, T Ide, K Nishio, CD Gregory, JN Waugh, N Booth, R Heathcote, C Murphy, G Gregori, J Smallcombe, C Barton, A Dizière, M Koenig, N Woolsey, Y Matsumoto, A Mizuta, T Sugiyama, S Matsukiyo, T Moritaka, T Sano, H Takabe

© 2016 AIP Publishing LLC.A model experiment of magnetic field amplification (MFA) via the Richtmyer-Meshkov instability (RMI) in supernova remnants (SNRs) was performed using a high-power laser. In order to account for very-fast acceleration of cosmic rays observed in SNRs, it is considered that the magnetic field has to be amplified by orders of magnitude from its background level. A possible mechanism for the MFA in SNRs is stretching and mixing of the magnetic field via the RMI when shock waves pass through dense molecular clouds in interstellar media. In order to model the astrophysical phenomenon in laboratories, there are three necessary factors for the RMI to be operative: a shock wave, an external magnetic field, and density inhomogeneity. By irradiating a double-foil target with several laser beams with focal spot displacement under influence of an external magnetic field, shock waves were excited and passed through the density inhomogeneity. Radiative hydrodynamic simulations show that the RMI evolves as the density inhomogeneity is shocked, resulting in higher MFA.


Torus mapper: a code for dynamical models of galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 456 (2016) 1982-1998

J Binney, PJ McMillan


Evidence that the maximum electron energy in hotspots of FR II galaxies is not determined by synchrotron cooling

Monthly Notices of the Royal Astronomical Society 460 (2016) 3554-3562

AT Araudo, AR Bell, A Crilly, KM Blundell

© 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.It has been suggested that relativistic shocks in extragalactic sources may accelerate the highest energy cosmic rays. The maximum energy to which cosmic rays can be accelerated depends on the structure of magnetic turbulence near the shock but recent theoretical advances indicate that relativistic shocks are probably unable to accelerate particles to energies much larger than a PeV. We study the hotspots of powerful radiogalaxies, where electrons accelerated at the termination shock emit synchrotron radiation. The turnover of the synchrotron spectrum is typically observed between infrared and optical frequencies, indicating that the maximum energy of non-thermal electrons accelerated at the shock is ≲ TeV for a canonical magnetic field of ~100 μG. Based on theoretical considerations we show that this maximum energy cannot be constrained by synchrotron losses as usually assumed, unless the jet density is unreasonably large and most of the jet upstream energy goes to non-thermal particles. We test this result by considering a sample of hotspots observed with high spatial resolution at radio, infrared and optical wavelengths.


Laboratory astrophysical collisionless shock experiments on Omega and NIF

Journal of Physics: Conference Series 688 (2016)

HS Park, JS Ross, CM Huntington, F Fiuza, D Ryutov, D Casey, RP Drake, G Fiksel, D Froula, G Gregori, NL Kugland, C Kuranz, MC Levy, CK Li, J Meinecke, T Morita, R Petrasso, C Plechaty, B Remington, Y Sakawa, A Spitkovsky, H Takabe, AB Zylstra

© Published under licence by IOP Publishing Ltd.We are performing scaled astrophysics experiments on Omega and on NIF. Laser driven counter-streaming interpenetrating supersonic plasma flows can be studied to understand astrophysical electromagnetic plasma phenomena in a controlled laboratory setting. In our Omega experiments, the counter-streaming flow plasma state is measured using Thomson scattering diagnostics, demonstrating the plasma flows are indeed super-sonic and in the collisionless regime. We observe a surprising additional electron and ion heating from ion drag force in the double flow experiments that are attributed to the ion drag force and electrostatic instabilities. [1] A proton probe is used to image the electric and magnetic fields. We observe unexpected large, stable and reproducible electromagnetic field structures that arise in the counter-streaming flows [2]. The Biermann battery magnetic field generated near the target plane, advected along the flows, and recompressed near the midplane explains the cause of such self-organizing field structures [3]. A D3He implosion proton probe image showed very clear filamentary structures; three-dimensional Particle-In-Cell simulations and simulated proton radiography images indicate that these filamentary structures are generated by Weibel instabilities and that the magnetization level (ratio of magnetic energy over kinetic energy in the system) is ∼0.01 [4]. These findings have very high astrophysical relevance and significant implications. We expect to observe true collisionless shock formation when we use >100 kJ laser energy on NIF.


Scaling of up-down asymmetric turbulent momentum flux with poloidal shaping mode number in tokamaks

Plasma Physics and Controlled Fusion 58 (2016)

J Ball, FI Parra

© 2016 IOP Publishing Ltd.Breaking the up-down symmetry of tokamaks removes a constraint limiting intrinsic momentum transport, and hence toroidal rotation, to be small. Using gyrokinetic theory, we study the effect of different up-down asymmetric flux surface shapes on the turbulent transport of momentum. This is done by perturbatively expanding the gyrokinetic equation in large flux surface shaping mode number. It is found that the momentum flux generated by shaping that lacks mirror symmetry (which is necessarily up-down asymmetric) has a power law scaling with the shaping mode number. However, the momentum flux generated by mirror symmetric flux surface shaping (even if it is up-down asymmetric) decays exponentially with large shaping mode number. These scalings are consistent with nonlinear local gyrokinetic simulations and indicate that low mode number shaping effects (e.g. elongation, triangularity) are optimal for creating rotation. Additionally it suggests that breaking the mirror symmetry of flux surfaces may generate significantly more toroidal rotation.


Spherical shock in the presence of an external magnetic field

Journal of Physics: Conference Series 688 (2016)

Y Kuramitsu, S Matsukiyo, S Isayama, D Harada, T Oyama, R Fujino, Y Sakawa, T Morita, Y Yamaura, T Ishikawa, T Moritaka, T Sano, K Tomita, R Shimoda, Y Sato, K Uchino, A Pelka, R Crowston, N Woolsey, G Gregori, M Koenig, DW Yuan, CL Yin, YT Li, K Zhang, JY Zhong, FL Wang, N Ohnishi, K Nagamine, H Yoneda, H Takabe

© Published under licence by IOP Publishing Ltd.We investigate spherical collisionless shocks in the presence of an external magnetic field. Spherical collisionless shocks are common resultant of interactions between a expanding plasma and a surrounding plasma, such as the solar wind, stellar winds, and supernova remnants. Anisotropies often observed in shock propagations and their emissions, and it is widely believed a magnetic field plays a major role. Since the local observations of magnetic fields in astrophysical plasmas are not accessible, laboratory experiments provide unique capability to investigate such phenomena. We model the spherical shocks in the universe by irradiating a solid spherical target surrounded by a plasma in the presence of a magnetic field. We present preliminary results obtained by shadowgraphy.


Proton imaging of an electrostatic field structure formed in laser-produced counter-streaming plasmas

Journal of Physics: Conference Series 688 (2016)

T Morita, NL Kugland, W Wan, R Crowston, RP Drake, F Fiuza, G Gregori, C Huntington, T Ishikawa, M Koenig, C Kuranz, MC Levy, D Martinez, J Meinecke, F Miniati, CD Murphy, A Pelka, C Plechaty, R Presura, N Quirós, BA Remington, B Reville, JS Ross, DD Ryutov, Y Sakawa, L Steele, H Takabe, Y Yamaura, N Woolsey, HS Park

© Published under licence by IOP Publishing Ltd.We report the measurements of electrostatic field structures associated with an electrostatic shock formed in laser-produced counter-streaming plasmas with proton imaging. The thickness of the electrostatic structure is estimated from proton images with different proton kinetic energies from 4.7 MeV to 10.7 MeV. The width of the transition region is characterized by electron scale length in the laser-produced plasma, suggesting that the field structure is formed due to a collisionless electrostatic shock.


Search for dark matter annihilation in the Galactic Center with IceCube-79

EUROPEAN PHYSICAL JOURNAL C 75 (2015) ARTN 492

MG Aartsen, K Abraham, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, D Altmann, T Anderson, M Archinger, C Arguelles, TC Arlen, J Auffenberg, X Bai, SW Barwick, V Baum, R Bay, JJ Beatty, JB Tjus, K-H Becker, E Beiser, S BenZvi, P Berghaus, D Berley, E Bernardini, A Bernhard, DZ Besson, G Binder, D Bindig, M Bissok, E Blaufuss, J Blumenthal, DJ Boersma, C Bohm, M Boerner, F Bos, D Bose, S Boeser, O Botner, J Braun, L Brayeur, H-P Bretz, AM Brown, N Buzinsky, J Casey, M Casier, E Cheung, D Chirkin, A Christov, B Christy, K Clark, L Classen, S Coenders, DF Cowen, AHC Silva, J Daughhetee, JC Davis, M Day, JPAM de Andre, C De Clercq, H Dembinski, S De Ridder, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, JC Diaz-Velez, JP Dumm, M Dunkman, R Eagan, B Eberhardt, T Ehrhardt, B Eichmann, S Euler, PA Evenson, O Fadiran, S Fahey, AR Fazely, A Fedynitch, J Feintzeig, J Felde, K Filimonov, C Finley, T Fischer-Wasels, S Flis, T Fuchs, M Glagla, TK Gaisser, R Gaior, J Gallagher, L Gerhardt, K Ghorbani, D Gier, L Gladstone, T Gluesenkamp, A Goldschmidt, G Golup, JG Gonzalez, D Gora, D Grant, P Gretskov, JC Groh, A Gross, C Ha, C Haack, AH Ismail, A Hallgren, F Halzen, B Hansmann, K Hanson, D Hebecker, D Heereman, K Helbing, R Hellauer, D Hellwig, S Hickford, J Hignight, GC Hill, KD Hoffman, R Hoffmann, K Holzapfel, A Homeier, K Hoshina, F Huang, M Huber, W Huelsnitz, PO Hulth, K Hultqvist, S In, A Ishihara, E Jacobi, GS Japaridze, K Jero, M Jurkovic, B Kaminsky, A Kappes, T Karg, A Karle, M Kauer, A Keivani, JL Kelley, J Kemp, A Kheirandish, J Kiryluk, J Klaes, SR Klein, G Kohnen, H Kolanoski, R Konietz, A Koob, L Koepke, C Kopper, S Kopper, DJ Koskinen, M Kowalski, K Krings, G Kroll, M Kroll, J Kunnen, N Kurahashi, T Kuwabara, M Labare, JL Lanfranchi, MJ Larson, M Lesiak-Bzdak, M Leuermann, J Leuner, J Luenemann, J Madsen, G Maggi, KBM Mahn, R Maruyama, K Mase, HS Matis, R Maunu, F McNally, K Meagher, M Medici, A Meli, T Menne, G Merino, T Meures, S Miarecki, E Middell, E Middlemas, J Miller, L Mohrmann, T Montaruli, R Morse, R Nahnhauer, U Naumann, H Niederhausen, SC Nowicki, DR Nygren, A Obertacke, A Olivas, A Omairat, A O'Murchadha, T Palczewski, L Paul, JA Pepper, CP de los Heros, C Pfendner, D Pieloth, E Pinat, J Posselt, PB Price, GT Przybylski, J Puetz, M Quinnan, L Raedel, M Rameez, K Rawlins, P Redl, R Reimann, M Relich, E Resconi, W Rhode, M Richman, S Richter, B Riedel, S Robertson, M Rongen, C Rott, T Ruhe, B Ruzybayev, D Ryckbosch, SM Saba, L Sabbatini, H-G Sander, A Sandrock, J Sandroos, S Sarkar, K Schatto, F Scheriau, M Schimp, T Schmidt, M Schmitz, S Schoenen, S Schoeneberg, A Schoenwald, A Schukraft, L Schulte, D Seckel, S Seunarine, R Shanidze, MWE Smith, D Soldin, GM Spiczak, C Spiering, M Stahlberg, M Stamatikos, T Stanev, NA Stanisha, A Stasik, T Stezelberger, RG Stokstad, A Stoessl, EA Strahler, R Stroem, NL Strotjohann, GW Sullivan, M Sutherland, H Taavola, I Taboada, S Ter-Antonyan, A Terliuk, G Tesic, S Tilav, PA Toale, MN Tobin, D Tosi, M Tselengidou, E Unger, M Usner, S Vallecorsa, N van Eijndhoven, J Vandenbroucke, J van Santen, S Vanheule, J Veenkamp, M Vehring, M Voge, M Vraeghe, C Walck, M Wallraff, N Wandkowsky, C Weaver, C Wendt, S Westerhoff, BJ Whelan, N Whitehorn, C Wichary, K Wiebe, CH Wiebusch, L Wille, DR Williams, H Wissing, M Wolf, TR Wood, K Woschnagg, DL Xu, XW Xu, Y Xu, JP Yanez, G Yodh, S Yoshida, P Zarzhitsky, M Zoll


Characterization of x-ray lens for use in probing high energy density states of matter

JOURNAL OF INSTRUMENTATION 10 (2015) ARTN P04010

P Mabey, NJ Hartley, HW Doyle, JE Cross, L Ceurvorst, A Savin, A Rigby, M Oliver, M Calvert, IJ Kim, D Riley, PA Norreys, CH Nam, DC Carroll, C Spindloe, G Gregori


Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas.

Proceedings of the National Academy of Sciences of the United States of America 112 (2015) 8211-8215

J Meinecke, P Tzeferacos, A Bell, R Bingham, R Clarke, E Churazov, R Crowston, H Doyle, RP Drake, R Heathcote, M Koenig, Y Kuramitsu, C Kuranz, D Lee, M MacDonald, C Murphy, M Notley, HS Park, A Pelka, A Ravasio, B Reville, Y Sakawa, W Wan, N Woolsey, R Yurchak, F Miniati, A Schekochihin, D Lamb, G Gregori

The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.


Non-linear mirror instability

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 447 (2015) L45-L49

F Rincon, AA Schekochihin, SC Cowley


Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

PHYSICAL REVIEW D 91 (2015) ARTN 072004

MG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, D Altmann, T Anderson, C Arguelles, TC Arlen, J Auffenberg, X Bai, SW Barwick, V Baum, R Bay, JJ Beatty, JB Tjus, K-H Becker, S BenZvi, P Berghaus, D Berley, E Bernardini, A Bernhard, DZ Besson, G Binder, D Bindig, M Bissok, E Blaufuss, J Blumenthal, DJ Boersma, C Bohm, F Bos, D Bose, S Boeser, O Botner, L Brayeur, H-P Bretz, AM Brown, J Brunner, N Buzinsky, J Casey, M Casier, E Cheung, D Chirkin, A Christov, B Christy, K Clark, L Classen, F Clevermann, S Coenders, DF Cowen, AHC Silva, J Daughhetee, JC Davis, M Day, JPAM de Andre, C De Clercq, S De Ridder, P Desiati, KD de Vries, M de With, T De Young, JC Diaz-Velez, M Dunkman, R Eagan, B Eberhardt, B Eichmann, J Eisch, S Euler, PA Evenson, O Fadiran, AR Fazely, A Fedynitch, J Feintzeig, J Felde, T Feusels, K Filimonov, C Finley, T Fischer-Wasels, S Flis, A Franckowiak, K Frantzen, T Fuchs, TK Gaisser, R Gaior, J Gallagher, L Gerhardt, D Gier, L Gladstone, T Gluesenkamp, A Goldschmidt, G Golup, JG Gonzalez, JA Goodman, D Gora, D Grant, P Gretskov, JC Groh, A Gross, C Ha, C Haack, AH Ismail, P Hallen, A Hallgren, F Halzen, K Hanson, D Hebecker, D Heereman, D Heinen, K Helbing, R Hellauer, D Hellwig, S Hickford, GC Hill, KD Hoffman, R Hoffmann, A Homeier, K Hoshina, F Huang, W Huelsnitz, PO Hulth, K Hultqvist, S Hussain, A Ishihara, E Jacobi, J Jacobsen, K Jagielski, GS Japaridze, K Jero, O Jlelati, M Jurkovic, B Kaminsky, A Kappes, T Karg, A Karle, M Kauer, A Keivani, JL Kelley, A Kheirandish, J Kiryluk, J Klaes, SR Klein, J-H Koehne, G Kohnen, H Kolanoski, A Koob, L Koepke, C Kopper, S Kopper, DJ Koskinen, M Kowalski, A Kriesten, K Krings, G Kroll, M Kroll, J Kunnen, N Kurahashi, T Kuwabara, M Labare, JL Lanfranchi, DT Larsen, MJ Larson, M Lesiak-Bzdak, M Leuermann, J Luenemann, J Madsen, G Maggi, R Maruyama, K Mase, HS Matis, R Maunu, F McNally, K Meagher, M Medici, A Meli, T Meures, S Miarecki, E Middell, E Middlemas, N Milke, J Miller, L Mohrmann, T Montaruli, R Morse, R Nahnhauer, U Naumann, H Niederhausen, SC Nowicki, DR Nygren, A Obertacke, S Odrowski, A Olivas, A Omairat, A O'Murchadha, T Palczewski, L Paul, O Penek, JA Pepper, CP de los Heros, C Pfendner, D Pieloth, E Pinat, J Posselt, PB Price, GT Przybylski, J Puetz, M Quinnan, L Raedel, M Rameez, K Rawlins, P Redl, I Rees, R Reimann, M Relich, E Resconi, W Rhode, M Richman, B Riedel, S Robertson, JP Rodrigues, M Rongen, C Rott, T Ruhe, B Ruzybayev, D Ryckbosch, SM Saba, H-G Sander, J Sandroos, M Santander, S Sarkar, K Schatto, F Scheriau, T Schmidt, M Schmitz, S Schoenen, S Schoeneberg, A Schoenwald, A Schukraft, L Schulte, O Schulz, D Seckel, Y Sestayo, S Seunarine, R Shanidze, MWE Smith, D Soldin, GM Spiczak, C Spiering, M Stamatikos, T Stanev, NA Stanisha, A Stasik, T Stezelberger, RG Stokstad, A Stoessl, EA Strahler, R Strom, NL Strotjohann, GW Sullivan, H Taavola, I Taboada, A Tamburro, A Tepe, S Ter-Antonyan, A Terliuk, G Tesic, S Tilav, PA Toale, MN Tobin, D Tosi, M Tselengidou, E Unger, M Usner, S Vallecorsa, N van Eijndhoven, J Vandenbroucke, J van Santen, M Vehring, M Voge, M Vraeghe, C Walck, M Wallraff, C Weaver, M Wellons, C Wendt, S Westerhoff, BJ Whelan, N Whitehorn, C Wichary, K Wiebe, CH Wiebusch, DR Williams, H Wissing, M Wolf, TR Wood, K Woschnagg, DL Xu, XW Xu, JP Yanez, G Yodh, S Yoshida, P Zarzhitsky, J Ziemann, S Zierke, M Zoll, I Collaboration


Intrinsic alignments of galaxies in the Horizon-AGN cosmological hydrodynamical simulation

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 454 (2015) 2736-2753

N Chisari, S Codis, C Laigle, Y Dubois, C Pichon, J Devriendt, A Slyz, L Miller, R Gavazzi, K Benabed


Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube

PHYSICAL REVIEW D 91 (2015) ARTN 022001

MG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, D Altmann, T Anderson, C Arguelles, TC Arlen, J Auffenberg, X Bai, SW Barwick, V Baum, R Bay, JJ Beatty, JB Tjus, K-H Becker, S BenZvi, P Berghaus, D Berley, E Bernardini, A Bernhard, DZ Besson, G Binder, D Bindig, M Bissok, E Blaufuss, J Blumenthal, DJ Boersma, C Bohm, F Bos, D Bose, S Boeser, O Botner, L Brayeur, H-P Bretz, AM Brown, N Buzinsky, J Casey, M Casier, E Cheung, D Chirkin, A Christov, B Christy, K Clark, L Classen, F Clevermann, S Coenders, DF Cowen, AHC Silva, M Danninger, J Daughhetee, JC Davis, M Day, JPAM De Andre, C De Clercq, S De Ridder, P Desiati, KD De Vries, M De With, T DeYoung, JC Diaz-Velez, M Dunkman, R Eagan, B Eberhardt, B Eichmann, J Eisch, S Euler, PA Evenson, O Fadiran, AR Fazely, A Fedynitch, J Feintzeig, J Felde, T Feusels, K Filimonov, C Finley, T Fischer-Wasels, S Flis, A Franckowiak, K Frantzen, T Fuchs, TK Gaisser, R Gaior, J Gallagher, L Gerhardt, D Gier, L Gladstone, T Gluesenkamp, A Goldschmidt, G Golup, JG Gonzalez, JA Goodman, D Gora, D Grant, P Gretskov, JC Groh, A Gross, C Ha, C Haack, AH Ismail, P Hallen, A Hallgren, F Halzen, K Hanson, D Hebecker, D Heereman, D Heinen, K Helbing, R Hellauer, D Hellwig, S Hickford, GC Hill, KD Hoffman, R Hoffmann, A Homeier, K Hoshina, F Huang, W Huelsnitz, PO Hulth, K Hultqvist, S Hussain, A Ishihara, E Jacobi, J Jacobsen, K Jagielski, GS Japaridze, K Jero, O Jlelati, M Jurkovic, B Kaminsky, A Kappes, T Karg, A Karle, M Kauer, A Keivani, JL Kelley, A Kheirandish, J Kiryluk, J Klaes, SR Klein, J-H Koehne, G Kohnen, H Kolanoski, A Koob, L Koepke, C Kopper, S Kopper, DJ Koskinen, M Kowalski, A Kriesten, K Krings, G Kroll, M Kroll, J Kunnen, N Kurahashi, T Kuwabara, M Labare, DT Larsen, MJ Larson, M Lesiak-Bzdak, M Leuermann, J Leute, J Luenemann, J Madsen, G Maggi, R Maruyama, K Mase, HS Matis, R Maunu, F McNally, K Meagher, M Medici, A Meli, T Meures, S Miarecki, E Middell, E Middlemas, N Milke, J Miller, L Mohrmann, T Montaruli, R Morse, R Nahnhauer, U Naumann, H Niederhausen, SC Nowicki, DR Nygren, A Obertacke, S Odrowski, A Olivas, A Omairat, A O'Murchadha, T Palczewski, L Paul, OE Penek, JA Pepper, CPDL Heros, C Pfendner, D Pieloth, E Pinat, J Posselt, PB Price, GT Przybylski, J Puetz, M Quinnan, L Raedel, M Rameez, K Rawlins, P Redl, I Rees, R Reimann, M Relich, E Resconi, W Rhode, M Richman, B Riedel, S Robertson, JP Rodrigues, M Rongen, C Rott, T Ruhe, B Ruzybayev, D Ryckbosch, SM Saba, H-G Sander, J Sandroos, M Santander, S Sarkar, K Schatto, F Scheriau, T Schmidt, M Schmitz, S Schoenen, S Schoeneberg, A Schoenwald, A Schukraft, L Schulte, O Schulz, D Seckel, Y Sestayo, S Seunarine, R Shanidze, MWE Smith, D Soldin, GM Spiczak, C Spiering, M Stamatikos, T Stanev, NA Stanisha, A Stasik, T Stezelberger, RG Stokstad, A Stoessl, EA Strahler, R Stroem, NL Strotjohann, GW Sullivan, H Taavola, I Taboada, A Tamburro, A Tepe, S Ter-Antonyan, A Terliuk, G Tesic, S Tilav, PA Toale, MN Tobin, D Tosi, M Tselengidou, E Unger, M Usner, S Vallecorsa, N van Eijndhoven, J Vandenbroucke, J van Santen, M Vehring, M Voge, M Vraeghe, C Walck, M Wallraff, C Weaver, M Wellons, C Wendt, S Westerhoff, BJ Whelan, N Whitehorn, C Wichary, K Wiebe, CH Wiebusch, DR Williams, H Wissing, M Wolf, TR Wood, K Woschnagg, DL Xu, XW Xu, JP Yanez, G Yodh, S Yoshida, P Zarzhitsky, J Ziemann, S Zierke, M Zoll


Black hole evolution - I. Supernova-regulated black hole growth

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 452 (2015) 1502-1518

Y Dubois, M Volonteri, J Silk, J Devriendt, A Slyz, R Teyssier


Extended distribution functions for our Galaxy

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 449 (2015) 3479-3502

JL Sanders, J Binney