Publications


Holographic isotropisation in Gauss-Bonnet gravity

Journal of High Energy Physics 2017 (2017)

T Andrade, J Casalderrey-Solana, A Ficnar

© 2017, The Author(s).We study holographic isotropisation of homogeneous, strongly coupled, non-Abelian plasmas in Gauss-Bonnet gravity with a negative cosmological constant. We focus on small values of the Gauss-Bonnet coupling parameter λGB and linearise the equations of motion around a time-dependent background solution with λGB = 0. We numerically solve the linearised equations and show that the entire time evolution of the pressure anisotropy can be well approximated by the linear in λGB corrections to the quasinormal mode expansion, even in the cases of high anisotropy. We finally show that, quite generally, the time evolution of the pressure anisotropy with the Gauss-Bonnet term is approximately shifted with respect to the evolution without it, with the sign of the shift being directly related to the sign of the λGB parameter. Combined with the observation that negative λGB captures qualitative features of positive gauge coupling corrections, this suggests that the latter generically increase the isotropisation time of strongly coupled plasmas.


First search for dark matter annihilations in the Earth with the IceCube detector: IceCube Collaboration

European Physical Journal C 77 (2017)

MG Aartsen, K Abraham, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, D Altmann, K Andeen, T Anderson, I Ansseau, G Anton, M Archinger, C Argüelles, J Auffenberg, S Axani, X Bai, SW Barwick, V Baum, R Bay, JJ Beatty, J Becker Tjus, KH Becker, S BenZvi, D Berley, E Bernardini, A Bernhard, DZ Besson, G Binder, D Bindig, M Bissok, E Blaufuss, S Blot, C Bohm, M Börner, F Bos, D Bose, S Böser, O Botner, J Braun, L Brayeur, HP Bretz, S Bron, A Burgman, T Carver, M Casier, E Cheung, D Chirkin, A Christov, K Clark, L Classen, S Coenders, GH Collin, JM Conrad, DF Cowen, R Cross, M Day, JPAM de André, C De Clercq, E del Pino Rosendo, H Dembinski, S De Ridder, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, JC Díaz-Vélez, V di Lorenzo, H Dujmovic, JP Dumm, M Dunkman, B Eberhardt, T Ehrhardt, B Eichmann, P Eller, S Euler, PA Evenson, S Fahey, AR Fazely, J Feintzeig, J Felde, K Filimonov, C Finley, S Flis, CC Fösig, A Franckowiak, E Friedman, T Fuchs, TK Gaisser, J Gallagher, L Gerhardt, K Ghorbani, W Giang, L Gladstone, M Glagla

© 2017, The Author(s).We present the results of the first IceCube search for dark matter annihilation in the center of the Earth. Weakly interacting massive particles (WIMPs), candidates for dark matter, can scatter off nuclei inside the Earth and fall below its escape velocity. Over time the captured WIMPs will be accumulated and may eventually self-annihilate. Among the annihilation products only neutrinos can escape from the center of the Earth. Large-scale neutrino telescopes, such as the cubic kilometer IceCube Neutrino Observatory located at the South Pole, can be used to search for such neutrino fluxes. Data from 327 days of detector livetime during 2011/2012 were analyzed. No excess beyond the expected background from atmospheric neutrinos was detected. The derived upper limits on the annihilation rate of WIMPs in the Earth and the resulting muon flux are an order of magnitude stronger than the limits of the last analysis performed with data from IceCube’s predecessor AMANDA. The limits can be translated in terms of a spin-independent WIMP–nucleon cross section. For a WIMP mass of 50 GeV this analysis results in the most restrictive limits achieved with IceCube data.


Second-order transport, quasinormal modes and zero-viscosity limit in the Gauss-Bonnet holographic fluid

Journal of High Energy Physics 2017 (2017)

S Grozdanov, AO Starinets

© 2017, The Author(s).Gauss-Bonnet holographic fluid is a useful theoretical laboratory to study the effects of curvature-squared terms in the dual gravity action on transport coefficients, quasinormal spectra and the analytic structure of thermal correlators at strong coupling. To understand the behavior and possible pathologies of the Gauss-Bonnet fluid in 3 + 1 dimensions, we compute (analytically and non-perturbatively in the Gauss-Bonnet coupling) its second-order transport coefficients, the retarded two- and three-point correlation functions of the energy-momentum tensor in the hydrodynamic regime as well as the relevant quasinormal spectrum. The Haack-Yarom universal relation among the second-order transport coefficients is violated at second order in the Gauss-Bonnet coupling. In the zero-viscosity limit, the holographic fluid still produces entropy, while the momentum diffusion and the sound attenuation are suppressed at all orders in the hydrodynamic expansion. By adding higher-derivative electromagnetic field terms to the action, we also compute corrections to charge diffusion and identify the non-perturbative parameter regime in which the charge diffusion constant vanishes.


THE CONTRIBUTION of FERMI-2LAC BLAZARS to DIFFUSE TEV-PEV NEUTRINO FLUX

Astrophysical Journal 835 (2017)

MG Aartsen, K Abraham, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, D Altmann, K Andeen, T Anderson, I Ansseau, G Anton, M Archinger, C Arguelles, TC Arlen, J Auffenberg, S Axani, X Bai, SW Barwick, V Baum, R Bay, JJ Beatty, JB Tjus, KH Becker, S Benzvi, P Berghaus, D Berley, E Bernardini, A Bernhard, DZ Besson, G Binder, D Bindig, M Bissok, E Blaufuss, S Blot, DJ Boersma, C Bohm, M Börner, F Bos, D Bose, S Böser, O Botner, J Braun, L Brayeur, HP Bretz, A Burgman, J Casey, M Casier, E Cheung, D Chirkin, A Christov, K Clark, L Classen, S Coenders, GH Collin, JM Conrad, DF Cowen, AHC Silva, J Daughhetee, JC Davis, M Day, JPAMD André, CD Clercq, EDP Rosendo, H Dembinski, SD Ridder, P Desiati, KDD Vries, GD Wasseige, MD With, T Deyoung, JC Díaz-Vélez, VD Lorenzo, H Dujmovic, JP Dumm, M Dunkman, B Eberhardt, T Ehrhardt, B Eichmann, S Euler, PA Evenson, S Fahey, AR Fazely, J Feintzeig, J Felde, K Filimonov, C Finley, S Flis, CC Fösig, A Franckowiak, T Fuchs, TK Gaisser, R Gaior, J Gallagher, L Gerhardt, K Ghorbani

© 2017. The American Astronomical Society. All rights reserved.The recent discovery of a diffuse cosmic neutrino flux extending up to PeV energies raises the question of which astrophysical sources generate this signal. Blazars are one class of extragalactic sources which may produce such high-energy neutrinos. We present a likelihood analysis searching for cumulative neutrino emission from blazars in the 2nd Fermi-LAT AGN catalog (2LAC) using IceCube neutrino data set 2009-12, which was optimized for the detection of individual sources. In contrast to those in previous searches with IceCube, the populations investigated contain up to hundreds of sources, the largest one being the entire blazar sample in the 2LAC catalog. No significant excess is observed, and upper limits for the cumulative flux from these populations are obtained. These constrain the maximum contribution of 2LAC blazars to the observed astrophysical neutrino flux to 27% or less between around 10 TeV and 2 PeV, assuming the equipartition of flavors on Earth and a single power-law spectrum with a spectral index of -2.5. We can still exclude the fact that 2LAC blazars (and their subpopulations) emit more than 50% of the observed neutrinos up to a spectral index as hard as -2.2 in the same energy range. Our result takes into account the fact that the neutrino source count distribution is unknown, and it does not assume strict proportionality of the neutrino flux to the measured 2LAC γ-ray signal for each source. Additionally, we constrain recent models for neutrino emission by blazars.


Holographic collisions in non-conformal theories

Journal of High Energy Physics 2017 (2017)

M Attems, J Casalderrey-Solana, D Mateos, D Santos-Oliván, CF Sopuerta, M Triana, M Zilhão

© 2017, The Author(s).We numerically simulate gravitational shock wave collisions in a holographic model dual to a non-conformal four-dimensional gauge theory. We find two novel effects associated to the non-zero bulk viscosity of the resulting plasma. First, the hydrodynamization time increases. Second, if the bulk viscosity is large enough then the plasma becomes well described by hydrodynamics before the energy density and the average pressure begin to obey the equilibrium equation of state. We discuss implications for the quark-gluon plasma created in heavy ion collision experiments.


Holomorphic Yukawa couplings for complete intersection Calabi-Yau manifolds

Journal of High Energy Physics 2017 (2017)

S Blesneag, EI Buchbinder, A Lukas

© 2017, The Author(s).We develop methods to compute holomorphic Yukawa couplings for heterotic compactifications on complete intersection Calabi-Yau manifolds, generalising results of an earlier paper for Calabi-Yau hypersurfaces. Our methods are based on constructing the required bundle-valued forms explicitly and evaluating the relevant integrals over the projective ambient space. We also show how our approach relates to an earlier, algebraic one to calculate the holomorphic Yukawa couplings. A vanishing theorem, which we prove, implies that certain Yukawa couplings allowed by low-energy symmetries are zero due to topological reasons. To illustrate our methods, we calculate Yukawa couplings for SU(5)-based standard models on a co-dimension two complete intersection manifold.


Hodge numbers for all CICY quotients

Journal of High Energy Physics 2017 (2017)

A Constantin, J Gray, A Lukas

© 2017, The Author(s).We present a general method for computing Hodge numbers for Calabi-Yau manifolds realised as discrete quotients of complete intersections in products of projective spaces. The method relies on the computation of equivariant cohomologies and is illustrated for several explicit examples. In this way, we compute the Hodge numbers for all discrete quotients obtained in Braun’s classification [1].


Searches for Sterile Neutrinos with the IceCube Detector.

Physical review letters 117 (2016) 071801-

MG Aartsen, K Abraham, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, D Altmann, K Andeen, T Anderson, I Ansseau, G Anton, M Archinger, C Argüelles, TC Arlen, J Auffenberg, S Axani, X Bai, SW Barwick, V Baum, R Bay, JJ Beatty, J Becker Tjus, KH Becker, S BenZvi, P Berghaus, D Berley, E Bernardini, A Bernhard, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, DJ Boersma, C Bohm, M Börner, F Bos, D Bose, S Böser, O Botner, J Braun, L Brayeur, HP Bretz, A Burgman, J Casey, M Casier, E Cheung, D Chirkin, A Christov, K Clark, L Classen, S Coenders, GH Collin, JM Conrad, DF Cowen, AH Cruz Silva, J Daughhetee, JC Davis, M Day, JP de André, C De Clercq, E Del Pino Rosendo, H Dembinski, S De Ridder, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, JC Díaz-Vélez, V di Lorenzo, H Dujmovic, JP Dumm, M Dunkman, B Eberhardt, T Ehrhardt, B Eichmann, S Euler, PA Evenson, S Fahey, AR Fazely, J Feintzeig, J Felde, K Filimonov, C Finley, S Flis, CC Fösig, T Fuchs, TK Gaisser, R Gaior, J Gallagher, L Gerhardt, K Ghorbani, W Giang, L Gladstone, T Glüsenkamp, A Goldschmidt, G Golup, JG Gonzalez, D Góra, D Grant, Z Griffith, A Haj Ismail, A Hallgren, F Halzen, E Hansen, K Hanson, D Hebecker, D Heereman, K Helbing, R Hellauer, S Hickford, J Hignight, GC Hill, KD Hoffman, R Hoffmann, K Holzapfel, A Homeier, K Hoshina, F Huang, M Huber, W Huelsnitz, K Hultqvist, S In, A Ishihara, E Jacobi, GS Japaridze, M Jeong, K Jero, BJ Jones, M Jurkovic, A Kappes, T Karg, A Karle, U Katz, M Kauer, A Keivani, JL Kelley, A Kheirandish, M Kim, T Kintscher, J Kiryluk, T Kittler, SR Klein, G Kohnen, R Koirala, H Kolanoski, L Köpke, C Kopper, S Kopper, DJ Koskinen, M Kowalski, K Krings, M Kroll, G Krückl, C Krüger, J Kunnen, S Kunwar, N Kurahashi, T Kuwabara, M Labare, JL Lanfranchi, MJ Larson, D Lennarz, M Lesiak-Bzdak, M Leuermann, L Lu, J Lünemann, J Madsen, G Maggi, KB Mahn, S Mancina, M Mandelartz, R Maruyama, K Mase, R Maunu, F McNally, K Meagher, M Medici, M Meier, A Meli, T Menne, G Merino, T Meures, S Miarecki, E Middell, L Mohrmann, T Montaruli, M Moulai, R Nahnhauer, U Naumann, G Neer, H Niederhausen, SC Nowicki, DR Nygren, A Obertacke Pollmann, A Olivas, A Omairat, A O'Murchadha, T Palczewski, H Pandya, DV Pankova, JA Pepper, C Pérez de Los Heros, C Pfendner, D Pieloth, E Pinat, J Posselt, PB Price, GT Przybylski, M Quinnan, C Raab, M Rameez, K Rawlins, M Relich, E Resconi, W Rhode, M Richman, B Riedel, S Robertson, C Rott, T Ruhe, D Ryckbosch, D Rysewyk, L Sabbatini, J Salvado, SE Sanchez Herrera, A Sandrock, J Sandroos, S Sarkar, K Satalecka, P Schlunder, T Schmidt, S Schöneberg, A Schönwald, D Seckel, S Seunarine, D Soldin, M Song, GM Spiczak, C Spiering, M Stamatikos, T Stanev, A Stasik, A Steuer, T Stezelberger, RG Stokstad, A Stößl, R Ström, NL Strotjohann, GW Sullivan, M Sutherland, H Taavola, I Taboada, J Tatar, S Ter-Antonyan, A Terliuk, G Tešić, S Tilav, PA Toale, MN Tobin, S Toscano, D Tosi, M Tselengidou, A Turcati, E Unger, M Usner, S Vallecorsa, J Vandenbroucke, N van Eijndhoven, S Vanheule, M van Rossem, J van Santen, J Veenkamp, M Voge, M Vraeghe, C Walck, A Wallace, N Wandkowsky, C Weaver, C Wendt, S Westerhoff, BJ Whelan, K Wiebe, L Wille, DR Williams, L Wills, H Wissing, M Wolf, TR Wood, E Woolsey, K Woschnagg, DL Xu, XW Xu, Y Xu, JP Yanez, G Yodh, S Yoshida, M Zoll

The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous ν_{μ} or ν[over ¯]_{μ} disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3+1 model, in which muon antineutrinos experience a strong Mikheyev-Smirnov-Wolfenstein-resonant oscillation. The exclusion limits extend to sin^{2}2θ_{24}≤0.02 at Δm^{2}∼0.3  eV^{2} at the 90% confidence level. The allowed region from global analysis of appearance experiments, including LSND and MiniBooNE, is excluded at approximately the 99% confidence level for the global best-fit value of |U_{e4}|^{2}.


A Comprehensive Analysis of Jet Quenching via a Hybrid Strong/Weak Coupling Model for Jet-Medium Interactions

Nuclear Physics A 956 (2016) 613-616

J Casalderrey-Solana, DC Gulhan, JG Milhano, D Pablos, K Rajagopal

© 2016 Elsevier B.V.Within a hybrid strong/weak coupling model for jets in strongly coupled plasma, we explore jet modifications in ultra-relativistic heavy ion collisions. Our approach merges the perturbative dynamics of hard jet evolution with the strongly coupled dynamics which dominates the soft exchanges between the fast partons in the jet shower and the strongly coupled plasma itself. We implement this approach in a Monte Carlo, which supplements the DGLAP shower with the energy loss dynamics as dictated by holographic computations, up to a single free parameter that we fit to data. We then augment the model by incorporating the transverse momentum picked up by each parton in the shower as it propagates through the medium, at the expense of adding a second free parameter. We use this model to discuss the influence of the transverse broadening of the partons in a jet on intra-jet observables. In addition, we explore the sensitivity of such observables to the back-reaction of the plasma to the passage of the jet.


Thermodynamics, transport and relaxation in non-conformal theories

Journal of High Energy Physics 2016 (2016)

M Attems, J Casalderrey-Solana, D Mateos, I Papadimitriou, D Santos-Oliván, CF Sopuerta, M Triana, M Zilhão

© 2016, The Author(s).We study the equilibrium and near-equilibrium properties of a holographic five-dimensional model consisting of Einstein gravity coupled to a scalar field with a non-trivial potential. The dual four-dimensional gauge theory is not conformal and, at zero temperature, exhibits a renormalisation group flow between two different fixed points. We quantify the deviations from conformality both in terms of thermodynamic observables and in terms of the bulk viscosity of the theory. The ratio of bulk over shear viscosity violates Buchel’s bound. We study relaxation of small-amplitude, homogeneous perturbations by computing the quasi-normal modes of the system at zero spatial momentum. In this approximation we identify two different relaxation channels. At high temperatures, the different pressures first become approximately equal to one another, and subsequently this average pressure evolves towards the equilibrium value dictated by the equation of state. At low temperatures, the average pressure first evolves towards the equilibrium pressure, and only later the different pressures become approximately equal to one another.


AN ALL-SKY SEARCH for THREE FLAVORS of NEUTRINOS from GAMMA-RAY BURSTS with the ICECUBE NEUTRINO OBSERVATORY

Astrophysical Journal 824 (2016)

MG Aartsen, K Abraham, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, D Altmann, T Anderson, I Ansseau, G Anton, M Archinger, C Arguelles, TC Arlen, J Auffenberg, X Bai, SW Barwick, V Baum, R Bay, JJ Beatty, JB Tjus, KH Becker, E Beiser, S Benzvi, P Berghaus, D Berley, E Bernardini, A Bernhard, DZ Besson, G Binder, D Bindig, M Bissok, E Blaufuss, J Blumenthal, DJ Boersma, C Bohm, M Börner, F Bos, D Bose, S Böser, O Botner, J Braun, L Brayeur, HP Bretz, N Buzinsky, J Casey, M Casier, E Cheung, D Chirkin, A Christov, K Clark, L Classen, S Coenders, GH Collin, JM Conrad, DF Cowen, AH Cruz Silva, J Daughhetee, JC Davis, M Day, JPAM De André, C De Clercq, E Del Pino Rosendo, H Dembinski, S De Ridder, P Desiati, KD De Vries, G De Wasseige, M De With, T Deyoung, JC Díaz-Vélez, V Di Lorenzo, H Dujmovic, JP Dumm, M Dunkman, B Eberhardt, T Ehrhardt, B Eichmann, S Euler, PA Evenson, S Fahey, AR Fazely, J Feintzeig, J Felde, K Filimonov, C Finley, S Flis, CC Fösig, T Fuchs, TK Gaisser, R Gaior, J Gallagher, L Gerhardt, K Ghorbani, D Gier, L Gladstone

© 2016. The American Astronomical Society. All rights reserved.We present the results and methodology of a search for neutrinos produced in the decay of charged pions created in interactions between protons and gamma-rays during the prompt emission of 807 gamma-ray bursts (GRBs) over the entire sky. This three-year search is the first in IceCube for shower-like Cherenkov light patterns from electron, muon, and tau neutrinos correlated with GRBs. We detect five low-significance events correlated with five GRBs. These events are consistent with the background expectation from atmospheric muons and neutrinos. The results of this search in combination with those of IceCube's four years of searches for track-like Cherenkov light patterns from muon neutrinos correlated with Northern-Hemisphere GRBs produce limits that tightly constrain current models of neutrino and ultra high energy cosmic ray production in GRB fireballs.


The prompt atmospheric neutrino flux in the light of LHCb

JOURNAL OF HIGH ENERGY PHYSICS (2016) ARTN 130

R Gauld, J Rojo, L Rottoli, S Sarkar, J Talbert


Search for astrophysical tau neutrinos in three years of IceCube data

PHYSICAL REVIEW D 93 (2016)

MG Aartsen, K Abraham, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, D Altmann, T Anderson, I Ansseau, M Archinger, C Arguelles, TC Arlen, J Auffenberg, X Bai, SW Barwick, V Baum, R Bay, JJ Beatty, JB Tjus, K-H Becker, E Beiser, S BenZvi, P Berghaus, D Berley, E Bernardini, A Bernhard, DZ Besson, G Binder, D Bindig, M Bissok, E Blaufuss, J Blumenthal, DJ Boersma, C Bohm, M Boerner, F Bos, D Bose, S Boeser, O Botner, J Braun, L Brayeur, H-P Bretz, N Buzinsky, J Casey, M Casier, E Cheung, D Chirkin, A Christov, K Clark, L Classen, S Coenders, DF Cowen, AHC Silva, J Daughhetee, JC Davis, M Day, JPAM de Andre, C De Clercq, EDP Rosendo, H Dembinski, S De Ridder, P Desiati, KD de Vries, G de Wasseige, M de With, T De Young, JC Diaz-Velez, V di Lorenzo, JP Dumm, M Dunkman, R Eagan, B Eberhardt, T Ehrhardt, B Eichmann, S Euler, PA Evenson, O Fadiran, S Fahey, AR Fazely, A Fedynitch, J Feintzeig, J Felde, K Filimonov, C Finley, T Fischer-Wasels, S Flis, C-C Foesig, T Fuchs, TK Gaisser, R Gaior, J Gallagher, L Gerhardt, K Ghorbani, D Gier, L Gladstone, M Glagla, T Gluesenkamp, A Goldschmidt, G Golup, JG Gonzalez, D Gora, D Grant, JC Groh, A Gross, C Ha, C Haack, AH Ismail, A Hallgren, F Halzen, E Hansen, B Hansmann, K Hanson, D Hebecker, D Heereman, K Helbing, R Hellauer, S Hickford, J Hignight, GC Hill, KD Hoffman, R Hoffmann, K Holzapfel, A Homeier, K Hoshina, F Huang, M Huber, W Huelsnitz, PO Hulth, K Hultqvist, S In, A Ishihara, E Jacobi, GS Japaridze, K Jero, M Jurkovic, A Kappes, T Karg, A Karle, M Kauer, A Keivani, JL Kelley, J Kemp, A Kheirandish, J Kiryluk, J Klaes, SR Klein, G Kohnen, R Koirala, H Kolanoski, R Konietz, L Koepke, C Kopper, S Kopper, DJ Koskinen, M Kowalski, K Krings, G Kroll, M Kroll, J Kunnen, N Kurahashi, T Kuwabara, M Labare, JL Lanfranchi, MJ Larson, M Lesiak-Bzdak, M Leuermann, J Leuner, L Lu, J Luenemann, J Madsen, G Maggi, KBM Mahn, R Maruyama, K Mase, HS Matis, R Maunu, F McNally, K Meagher, M Medici, A Meli, T Menne, G Merino, T Meures, S Miarecki, E Middell, E Middlemas, L Mohrmann, T Montaruli, R Morse, R Nahnhauer, U Naumann, G Neer, H Niederhausen, SC Nowicki, DR Nygren, A Obertacke, A Olivas, A Omairat, A O'Murchadha, T Palczewski, H Pandya, DV Pankova, L Paul, CPDL Heros, C Pfendner, D Pieloth, E Pinat, J Posselt, PB Price, GT Przybylski, J Puetz, M Quinnan, C Raab, L Raedel, M Rameez, K Rawlins, R Reimann, M Relich, E Resconi, W Rhode, M Richman, S Richter, B Riedel, S Robertson, M Rongen, C Rott, T Ruhe, D Ryckbosch, SM Saba, L Sabbatini, H-G Sander, A Sandrock, J Sandroos, S Sarkar, K Schatto, F Scheriau, M Schimp, T Schmidt, M Schmitz, S Schoenen, S Schoeneberg, A Schoenwald, L Schulte, D Seckel, S Seunarine, MWE Smith, D Soldin, M Song, GM Spiczak, C Spiering, M Stahlberg, M Stamatikos, T Stanev, NA Stanisha, A Stasik, T Stezelberger, RG Stokstad, A Stoessl, R Stroem, NL Strotjohann, GW Sullivan, M Sutherland, H Taavola, I Taboada, J Tatar, S Ter-Antonyan, A Terliuk, G Tesic, S Tilav, PA Toale, MN Tobin, S Toscano, D Tosi, M Tselengidou, A Turcati, E Unger, M Usner, S Vallecorsa, J Vandenbroucke, N van Eijndhoven, S Vanheule, J van Santen, J Veenkamp, M Vehring, M Voge, M Vraeghe, C Walck, A Wallace, M Wallraff, N Wandkowsky, C Weaver, C Wendt, S Westerhoff, BJ Whelan, N Whitehorn, K Wiebe, CH Wiebusch, L Wille, DR Williams, H Wissing, M Wolf, TR Wood, K Woschnagg, DL Xu, XW Xu, Y Xu, JP Yanez, G Yodh, S Yoshida, M Zoll, I Collaboration


THE SEARCH FOR TRANSIENT ASTROPHYSICAL NEUTRINO EMISSION WITH ICECUBE-DEEPCORE

ASTROPHYSICAL JOURNAL 816 (2016) ARTN 75

MG Aartsen, K Abraham, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, D Altmann, T Anderson, I Ansseaus, M Archinger, C Arguelles, TC Arlen, J Auffenberg, X Bai, SW Barwick, V Baum, R Bay, JJ Beatty, JB Tjus, K-H Becker, E Beiser, S Benzvi, P Berghaus, D Berley, E Bernardini, A Bernhard, DZ Besson, G Binder, D Bindig, M Bissoki, E Blaufuss, J Blumenthal, DJ Boersma, C Bohm, M Boerner, F Bos, D Bose, S Boeser, O Botner, J Braun, L Brayeur, H-P Bretz, N Buzinsky, J Casey, M Casier, E Cheung, D Chirkin, A Christov, K Clark, L Classen, S Coenders, DF Cowen, AHC Silva, J Daughhetee, JC Davis, M Day, JPAM de Andre, C De Clercq, E del Pino Rosendo, H Dembinski, S De Ridder, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, JC Diaz-Velez, V di Lorenzo, JP Dumm, M Dunkman, R Eagan, B Eberhardt, T Ehrhardt, B Eichmann, S Euler, PA Evenson, O Fadiran, S Fahey, AR Fazely, A Fedynitch, J Feintzeig, J Felde, K Filimonov, C Finley, T Fischer-Wasels, S Flis, C-C Foesig, T Fucus, TK Gaisser, R Gaior, J Gallagher, L Gerhardt, K Ghorbani, D Gier, L Gladstone, M Glagla, T Gluesenkamp, A Goldschmidt, G Golup, JG Gonzalez, D Gora, D Grant, JC Groii, A Gross, C Ha, C Haack, AH Ismail, A Hallgren, F Halzen, E Hansen, B Hansmann, K Hanson, D Hebecker, D Heereman, K Helbing, R Hellauer, S Hickford, J Hignigiit, GC Hill, KD Hoffman, R Hoffmann, K Holzapfel, A Homeier, K Hoshina, F Huang, M Huber, W Huelsnitz, PO Hulth, K Hultqvist, S In, A Ishihara, E Jacobi, GS Japaridze, K Jero, M Jurkovic, A Kappes, T Karg, A Karle, M Kauer, A Keivani, JL Kelley, J Kemp, A Kheirandish, J Kiryluk, J Klaes, SR Klein, G Kohnen, R Koirala, H Kolanoski, R Konietz, L Koepke, C Kopper, S Kopper, DJ Koskinen, M Kowalski, K Krings, G Kroll, M Kroll, J Kunnen, N Kurahashi, T Kuwabara, M Labare, JL Lanfranchi, MJ Larson, M Lesiak-Bzdak, M Leuermann, J Leuner, L Lu, J Lunemann, J Madsen, G Maggi, KBM Mahn, R Maruyama, K Mase, HS Matis, R Maunu, F McNally, K Meagher, M Medici, A Meli, T Menne, G Merino, T Meuress, S Miarecki, E Middell, E Middlemas, L Mohrmann, T Montaruli, R Morse, R Nahnhauer, U Naumann, G Neer, H Niederhausen, SC Nowicki, DR Nygren, A Obertacke, A Olivas, A Omairat, A O'Murchadha, T Palczewski, H Pandya, DV Pankova, L Paul, JA Pepper, C Perez de los Heros, C Pfendner, D Pieloth, E Pinat, J Posselt, PB Price, GT Przybylski, J Puetz, M Quinnan, C Raab, L Raedel, M Rameez, K Rawlins, R Reimann, M Relich, E Resconi, W Rhode, M Richman, S Richter, B Riedel, S Robertson, M Rongen, C Rott, T Ruhe, D Ryckbosch, SM Saba, L Sabbatini, H-G Sander, A Sandrock, J Sandroos, S Sarkar, K Schatto, F Scheriau, M Schimp, T Schmidt, M Schmitz, S Schoenen, S Schoeneberg, A Schoenwald, L Schulte, D Seckel, S Seunarine, MWE Smith, D Soldin, M Song, GM Spiczak, C Spiering, M Stahlberg, M Stamatikos, T Stanev, NA Stanisha, A Stasik, T Stezelberger, RG Stokstad, A Stoessl, R Strom, NL Strotjohann, GW Sullivan, M Sutherland, H Taavola, I Taboada, J Tatar, S Ter-Antonyan, A Terliuk, G Tesic, S Tilav, PA Toale, MN Tobin, S Toscano, D Tosi, M Tselengidou, A Turcati, E Unger, M Usner, S Vallecorsa, J Vandenbroucke, N van Eundhoven, S Vanheule, J van Santen, J Veenkamp, M Vehring, M Voge, M Vraeghe, C Walck, A Wallace, M Wallraff, N Wandkowsky, C Weaver, C Wendt, S Westerhoff, BJ Whelan, N Whitehorn, K Wiebe, CH Wiebusch, L Wille, DR Williams, H Wissing, M Wolf, TR Wood, K Woschnagg, DL Xu, XW Xu, Y Xu, JP Yanez, G Yodh, S Yoshida, M Zoll


Two-gluon emission and interference in a thin QCD medium: insights into jet formation

Journal of High Energy Physics 2016 (2016)

J Casalderrey-Solana, D Pablos, K Tywoniuk

© 2016, The Author(s).In heavy-ion collisions, an abundant production of high-energy QCD jets allows to study how these multiparticle sprays are modified as they pass through the quark-gluon plasma. In order to shed new light on this process, we compute the inclusive two-gluon rate off a hard quark propagating through a color deconfined medium at first order in medium opacity. We explicitly impose an energy ordering of the two emitted gluons, such that the “hard” gluon can be thought of as belonging to the jet substructure while the other is a “soft” emission (which can be collinear or medium-induced). Our analysis focusses on two specific limits that clarify the modification of the additional angle- and formation time-ordering of splittings. In one limit, the formation time of the “hard” gluon is short compared to the “soft” gluon formation time, leading to a probabilistic formula for production of and subsequent radiation off a quark-gluon antenna. In the other limit, the ordering of formation is reverted, which automatically leads to the fact that the jet substructure is resolved by the medium. We observe in this case a characteristic delay: the jet radiates as one color current (quark) up to the formation of the “hard” gluon, at which point we observe the onset of radiation of the new color current (gluon). Within our kinematic constraints, our computation supports a picture in which the in-medium jet dynamics are described as a collection of subsequent antennas which are resolved by the medium according to their transverse extent.


Yukawa unification in heterotic string theory

Physical Review D - Particles, Fields, Gravitation and Cosmology 94 (2016)

EI Buchbinder, A Constantin, J Gray, A Lukas

© 2016 American Physical Society.We analyze Yukawa unification in the context of E8×E8 heterotic Calabi-Yau models which rely on breaking to a grand unified theory (GUT) via a nonflat gauge bundle and subsequent Wilson line breaking to the standard model. Our focus is on underlying GUT theories with gauge group SU(5) or SO(10). We provide a detailed analysis of the fact that, in contrast to traditional field theory GUTs, the underlying GUT symmetry of these models does not enforce Yukawa unification. Using this formalism, we present various scenarios where Yukawa unification can occur as a consequence of additional symmetries. These additional symmetries arise naturally in some heterotic constructions, and we present an explicit heterotic line bundle model which realizes one of these scenarios.


Axion decay constants away from the lamppost

Journal of High Energy Physics 2016 (2016)

JP Conlon, S Krippendorf

© 2016, The Author(s).Abstract: It is unknown whether a bound on axion field ranges exists within quantum gravity. We study axion field ranges using extended supersymmetry, in particular allowing an analysis within strongly coupled regions of moduli space. We apply this strategy to Calabi-Yau compactifications with one and two Kähler moduli. We relate the maximally allowable decay constant to geometric properties of the underlying Calabi-Yau geometry. In all examples we find a maximal field range close to the reduced Planck mass (with the largest field range being 3.25 MP). On this perspective, field ranges relate to the intersection and instanton numbers of the underlying Calabi-Yau geometry.


SEARCH for SOURCES of HIGH-ENERGY NEUTRONS with FOUR YEARS of DATA from the ICETOP DETECTOR

Astrophysical Journal 830 (2016)

MG Aartsen, K Abraham, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, D Altmann, K Andeen, T Anderson, I Ansseau, G Anton, M Archinger, C Argüelles, J Auffenberg, S Axani, X Bai, SW Barwick, V Baum, R Bay, JJ Beatty, JB Tjus, KH Becker, S Benzvi, P Berghaus, D Berley, E Bernardini, A Bernhard, DZ Besson, G Binder, D Bindig, M Bissok, E Blaufuss, S Blot, C Bohm, M Börner, F Bos, D Bose, S Böser, O Botner, J Braun, L Brayeur, HP Bretz, A Burgman, T Carver, M Casier, E Cheung, D Chirkin, A Christov, K Clark, L Classen, S Coenders, GH Collin, JM Conrad, DF Cowen, R Cross, M Day, JPAMD André, CD Clercq, EDP Rosendo, H Dembinski, SD Ridder, P Desiati, KDD Vries, GD Wasseige, MD With, T Deyoung, JC Díaz-Vélez, VD Lorenzo, H Dujmovic, JP Dumm, M Dunkman, B Eberhardt, T Ehrhardt, B Eichmann, P Eller, S Euler, PA Evenson, S Fahey, AR Fazely, J Feintzeig, J Felde, K Filimonov, C Finley, S Flis, CC Fösig, A Franckowiak, E Friedman, T Fuchs, TK Gaisser, J Gallagher, L Gerhardt, K Ghorbani, W Giang, L Gladstone, M Glagla

© 2016. The American Astronomical Society. All rights reserved..IceTop is an air-shower array located on the Antarctic ice sheet at the geographic South Pole. IceTop can detect an astrophysical flux of neutrons from Galactic sources as an excess of cosmic-ray air showers arriving from the source direction. Neutrons are undeflected by the Galactic magnetic field and can typically travel 10 (E/PeV) pc before decay. Two searches are performed using 4 yr of the IceTop data set to look for a statistically significant excess of events with energies above 10 PeV (1016 eV) arriving within a small solid angle. The all-sky search method covers from -90° to approximately -50° in declination. No significant excess is found. A targeted search is also performed, looking for significant correlation with candidate sources in different target sets. This search uses a higher-energy cut (100 PeV) since most target objects lie beyond 1 kpc. The target sets include pulsars with confirmed TeV energy photon fluxes and high-mass X-ray binaries. No significant correlation is found for any target set. Flux upper limits are determined for both searches, which can constrain Galactic neutron sources and production scenarios.


Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10 PeV with IceCube.

Phys Rev Lett 117 (2016) 241101-

MG Aartsen, K Abraham, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, D Altmann, K Andeen, T Anderson, I Ansseau, G Anton, M Archinger, C Argüelles, J Auffenberg, S Axani, X Bai, SW Barwick, V Baum, R Bay, JJ Beatty, J Becker Tjus, KH Becker, S BenZvi, P Berghaus, D Berley, E Bernardini, A Bernhard, DZ Besson, G Binder, D Bindig, M Bissok, E Blaufuss, S Blot, C Bohm, M Börner, F Bos, D Bose, S Böser, O Botner, J Braun, L Brayeur, HP Bretz, A Burgman, T Carver, M Casier, E Cheung, D Chirkin, A Christov, K Clark, L Classen, S Coenders, GH Collin, JM Conrad, DF Cowen, R Cross, M Day, JP de André, C De Clercq, E Del Pino Rosendo, H Dembinski, S De Ridder, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, JC Díaz-Vélez, V di Lorenzo, H Dujmovic, JP Dumm, M Dunkman, B Eberhardt, T Ehrhardt, B Eichmann, P Eller, S Euler, PA Evenson, S Fahey, AR Fazely, J Feintzeig, J Felde, K Filimonov, C Finley, S Flis, CC Fösig, A Franckowiak, E Friedman, T Fuchs, TK Gaisser, J Gallagher, L Gerhardt, K Ghorbani, W Giang, L Gladstone, M Glagla, T Glüsenkamp, A Goldschmidt, G Golup, JG Gonzalez, D Grant, Z Griffith, C Haack, A Haj Ismail, A Hallgren, F Halzen, E Hansen, B Hansmann, T Hansmann, K Hanson, D Hebecker, D Heereman, K Helbing, R Hellauer, S Hickford, J Hignight, GC Hill, KD Hoffman, R Hoffmann, K Holzapfel, K Hoshina, F Huang, M Huber, K Hultqvist, S In, A Ishihara, E Jacobi, GS Japaridze, M Jeong, K Jero, BJ Jones, M Jurkovic, A Kappes, T Karg, A Karle, U Katz, M Kauer, A Keivani, JL Kelley, J Kemp, A Kheirandish, M Kim, T Kintscher, J Kiryluk, T Kittler, SR Klein, G Kohnen, R Koirala, H Kolanoski, R Konietz, L Köpke, C Kopper, S Kopper, DJ Koskinen, M Kowalski, K Krings, M Kroll, G Krückl, C Krüger, J Kunnen, S Kunwar, N Kurahashi, T Kuwabara, M Labare, JL Lanfranchi, MJ Larson, F Lauber, D Lennarz, M Lesiak-Bzdak, M Leuermann, J Leuner, L Lu, J Lünemann, J Madsen, G Maggi, KB Mahn, S Mancina, M Mandelartz, R Maruyama, K Mase, R Maunu, F McNally, K Meagher, M Medici, M Meier, A Meli, T Menne, G Merino, T Meures, S Miarecki, L Mohrmann, T Montaruli, M Moulai, R Nahnhauer, U Naumann, G Neer, H Niederhausen, SC Nowicki, DR Nygren, A Obertacke Pollmann, A Olivas, A O'Murchadha, T Palczewski, H Pandya, DV Pankova, Ö Penek, JA Pepper, C Pérez de Los Heros, D Pieloth, E Pinat, PB Price, GT Przybylski, M Quinnan, C Raab, L Rädel, M Rameez, K Rawlins, R Reimann, B Relethford, M Relich, E Resconi, W Rhode, M Richman, B Riedel, S Robertson, M Rongen, C Rott, T Ruhe, D Ryckbosch, D Rysewyk, L Sabbatini, SE Sanchez Herrera, A Sandrock, J Sandroos, S Sarkar, K Satalecka, M Schimp, P Schlunder, T Schmidt, S Schoenen, S Schöneberg, L Schumacher, D Seckel, S Seunarine, D Soldin, M Song, GM Spiczak, C Spiering, M Stahlberg, T Stanev, A Stasik, A Steuer, T Stezelberger, RG Stokstad, A Stößl, R Ström, NL Strotjohann, GW Sullivan, M Sutherland, H Taavola, I Taboada, J Tatar, F Tenholt, S Ter-Antonyan, A Terliuk, G Tešić, S Tilav, PA Toale, MN Tobin, S Toscano, D Tosi, M Tselengidou, A Turcati, E Unger, M Usner, J Vandenbroucke, N van Eijndhoven, S Vanheule, M van Rossem, J van Santen, J Veenkamp, M Vehring, M Voge, M Vraeghe, C Walck, A Wallace, M Wallraff, N Wandkowsky, C Weaver, MJ Weiss, C Wendt, S Westerhoff, BJ Whelan, S Wickmann, K Wiebe, CH Wiebusch, L Wille, DR Williams, L Wills, M Wolf, TR Wood, E Woolsey, K Woschnagg, DL Xu, XW Xu, Y Xu, JP Yanez, G Yodh, S Yoshida, M Zoll, IceCube Collaboration

We report constraints on the sources of ultrahigh-energy cosmic rays (UHECRs) above 10^{9}  GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high- energy neutrino-induced events which have deposited energies from 5×10^{5}  GeV to above 10^{11}  GeV. Two neutrino-induced events with an estimated deposited energy of (2.6±0.3)×10^{6}  GeV, the highest neutrino energy observed so far, and (7.7±2.0)×10^{5}  GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6σ. The hypothesis that the observed events are of cosmogenic origin is also rejected at >99% CL because of the limited deposited energy and the nonobservation of events at higher energy, while their observation is consistent with an astrophysical origin. Our limits on cosmogenic neutrino fluxes disfavor the UHECR sources having a cosmological evolution stronger than the star formation rate, e.g., active galactic nuclei and γ-ray bursts, assuming proton-dominated UHECRs. Constraints on UHECR sources including mixed and heavy UHECR compositions are obtained for models of neutrino production within UHECR sources. Our limit disfavors a significant part of parameter space for active galactic nuclei and new-born pulsar models. These limits on the ultrahigh-energy neutrino flux models are the most stringent to date.


OBSERVATION and CHARACTERIZATION of A COSMIC MUON NEUTRINO FLUX from the NORTHERN HEMISPHERE USING SIX YEARS of ICECUBE DATA

Astrophysical Journal 833 (2016)

MG Aartsen, K Abraham, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, D Altmann, K Andeen, T Anderson, I Ansseau, G Anton, M Archinger, C Argüelles, J Auffenberg, S Axani, X Bai, SW Barwick, V Baum, R Bay, JJ Beatty, JB Tjus, KH Becker, S Benzvi, P Berghaus, D Berley, E Bernardini, A Bernhard, DZ Besson, G Binder, D Bindig, M Bissok, E Blaufuss, S Blot, C Bohm, M Börner, F Bos, D Bose, S Böser, O Botner, J Braun, L Brayeur, HP Bretz, A Burgman, T Carver, M Casier, E Cheung, D Chirkin, A Christov, K Clark, L Classen, S Coenders, GH Collin, JM Conrad, DF Cowen, R Cross, M Day, JPAMD André, CD Clercq, EDP Rosendo, H Dembinski, SD Ridder, P Desiati, KDD Vries, GD Wasseige, MD With, T Deyoung, JC Díaz-Vélez, VD Lorenzo, H Dujmovic, JP Dumm, M Dunkman, B Eberhardt, T Ehrhardt, B Eichmann, P Eller, S Euler, PA Evenson, S Fahey, AR Fazely, J Feintzeig, J Felde, K Filimonov, C Finley, S Flis, CC Fösig, A Franckowiak, E Friedman, T Fuchs, TK Gaisser, J Gallagher, L Gerhardt, K Ghorbani, W Giang, L Gladstone, M Glagla

© 2016. The American Astronomical Society. All rights reserved.The IceCube Collaboration has previously discovered a high-energy astrophysical neutrino flux using neutrino events with interaction vertices contained within the instrumented volume of the IceCube detector. We present a complementary measurement using charged current muon neutrino events where the interaction vertex can be outside this volume. As a consequence of the large muon range the effective area is significantly larger but the field of view is restricted to the Northern Hemisphere. IceCube data from 2009 through 2015 have been analyzed using a likelihood approach based on the reconstructed muon energy and zenith angle. At the highest neutrino energies between 194 TeV and 7.8 PeV a significant astrophysical contribution is observed, excluding a purely atmospheric origin of these events at 5.6s significance. The data are well described by an isotropic, unbroken power-law flux with a normalization at 100 TeV neutrino energy of (0.90 -0.27+0.30) × 10-18 Gev-1 cm-2 s-1 sr-1and a hard spectral index of γ = 2.13 ± 0.13. The observed spectrum is harder in comparison to previous IceCube analyses with lower energy thresholds which may indicate a break in the astrophysical neutrino spectrum of unknown origin. The highest-energy event observed has a reconstructed muon energy of (4.5 ± 1.2) PeV which implies a probability of less than 0.005% for this event to be of atmospheric origin. Analyzing the arrival directions of all events with reconstructed muon energies above 200 TeV no correlation with known γ-ray sources was found. Using the high statistics of atmospheric neutrinos we report the current best constraints on a prompt atmospheric muon neutrino flux originating from charmed meson decays which is below 1.06 in units of the flux normalization of the model in Enberg et al.

Pages