Publications


High Mach-number collisionless shock driven by a laser with an external magnetic field

EPJ Web of Conferences 59 (2013)

T Morita, Y Sakawa, Y Kuramitsu, T Ide, K Nishio, M Kuwada, H Ide, K Tsubouchi, H Yoneda, A Nishida, T Namiki, T Norimatsu, K Tomita, K Nakayama, K Inoue, K Uchino, M Nakatsutsumi, A Pelka, M Koenig, Q Dong, D Yuan, G Gregori, H Takabe

Collisionless shocks are produced in counter-streaming plasmas with an external magnetic field. The shocks are generated due to an electrostatic field generated in counter-streaming laser-irradiated plasmas, as reported previously in a series of experiments without an external magnetic field [T. Morita et al., Phys. Plasmas, 17, 122702 (2010), Kuramitsu et al., Phys. Rev. Lett., 106, 175002 (2011)] via laser-irradiation of a double-CH-foil target. A magnetic field is applied to the region between two foils by putting an electro-magnet (∼10 T) perpendicular to the direction of plasma expansion. The generated shocks show different characteristics later in time (t > 20ns). © Owned by the authors, published by EDP Sciences, 2013.


High-power laser experiments to study collisionless shock generation

EPJ Web of Conferences 59 (2013)

Y Sakawa, Y Kuramitsu, T Morita, T Kato, H Tanji, T Ide, K Nishio, M Kuwada, T Tsubouchi, H Ide, T Norimatsu, C Gregory, N Woolsey, K Schaar, C Murphy, G Gregori, A Diziere, A Pelka, M Koenig, S Wang, Q Dong, Y Li, HS Park, S Ross, N Kugland, D Ryutov, B Remington, A Spitkovsky, D Froula, H Takabe

A collisionless Weibel-instability mediated shock in a self-generated magnetic field is studied using two-dimensional particle-in-cell simulation [Kato and Takabe, Astophys. J. Lett. 681, L93 (2008)]. It is predicted that the generation of the Weibel shock requires to use NIF-class high-power laser system. Collisionless electrostatic shocks are produced in counter-streaming plasmas using Gekko XII laser system [Kuramitsu et al., Phys. Rev. Lett. 106, 175002 (2011)]. A NIF facility time proposal is approved to study the formation of the collisionless Weibel shock. OMEGA and OMEGA EP experiments have been started to study the plasma conditions of counter-streaming plasmas required for the NIF experiment using Thomson scattering and to develop proton radiography diagnostics. © Owned by the authors, published by EDP Sciences, 2013.


Implosion and heating experiments of fast ignition targets by Gekko-XII and LFEX lasers

EPJ Web of Conferences 59 (2013)

H Shiraga, S Fujioka, M Nakai, T Watari, H Nakamura, Y Arikawa, H Hosoda, T Nagai, M Koga, H Kikuchi, Y Ishii, T Sogo, K Shigemori, H Nishimura, Z Zhang, M Tanabe, S Ohira, Y Fujii, T Namimoto, Y Sakawa, O Maegawa, T Ozaki, KA Tanaka, H Habara, T Iwawaki, K Shimada, M Key, P Norreys, J Pasley, H Nagatomo, T Johzaki, A Sunahara, M Murakami, H Sakagami, T Taguchi, T Norimatsu, H Homma, Y Fujimoto, A Iwamoto, N Miyanaga, J Kawanaka, T Kanabe, T Jitsuno, Y Nakata, K Tsubakimoto, K Sueda, R Kodama, K Kondo, N Morio, S Matsuo, T Kawasaki, K Sawai, K Tsuji, H Murakami, N Sarukura, T Shimizu, K Mima, H Azechi

The FIREX-1 project, the goal of which is to demonstrate fuel heating up to 5 keV by fast ignition scheme, has been carried out since 2003 including construction and tuning of LFEX laser and integrated experiments. Implosion and heating experiment of Fast Ignition targets have been performed since 2009 with Gekko-XII and LFEX lasers. A deuterated polystyrene shell target was imploded with the 0.53- μm Gekko-XII, and the 1.053- μm beam of the LFEX laser was injected through a gold cone attached to the shell to generate hot electrons to heat the imploded fuel plasma. Pulse contrast ratio of the LFEX beam was significantly improved. Also a variety of plasma diagnostic instruments were developed to be compatible with harsh environment of intense hard x-rays (γ rays) and electromagnetic pulses due to the intense LFEX beam on the target. Large background signals around the DD neutron signal in time-of-flight record of neutron detector were found to consist of neutrons via (γ,n) reactions and scattered gamma rays. Enhanced neutron yield was confirmed by carefully eliminating such backgrounds. Neutron enhancement up to 3.5 × 107 was observed. Heating efficiency was estimated to be 10-20% assuming a uniform temperature rise model. © Owned by the authors, published by EDP Sciences, 2013.


The role of collisions on mode competition between the two-stream and Weibel instabilities

Journal of Plasma Physics 79 (2013) 987-989

KA Humphrey, RMGM Trines, DC Speirs, P Norreys, R Bingham

We present results from numerical simulations conducted to investigate a potential method for realizing the required fusion fuel heating in the fast ignition scheme to achieving inertial confinement fusion. A comparison will be made between collisionless and collisional particle-in-cell simulations of the relaxation of a non-thermal electron beam through the two-stream instability. The results presented demonstrate energy transfer to the plasma ion population from the laser-driven electron beam via the nonlinear wave-wave interaction associated with the two-stream instability. Evidence will also be provided for the effects of preferential damping of competing instabilities such as the Weibel mode found to be detrimental to the ion heating process. © Cambridge University Press 2013.


Impact of extended preplasma on energy coupling in kilojoule energy relativistic laser interaction with cone wire targets relevant to fast ignition

New Journal of Physics 15 (2013)

T Yabuuchi, R Mishra, C McGuffey, B Qiao, MS Wei, H Sawada, Y Sentoku, T Ma, DP Higginson, KU Akli, D Batani, H Chen, LA Gizzi, MH Key, AJ MacKinnon, HS McLean, PA Norreys, PK Patel, RB Stephens, Y Ping, W Theobald, C Stoeckl, FN Beg

Cone-guided fast ignition laser fusion depends critically on details of the interaction of an intense laser pulse with the inside tip of a cone. Generation of relativistic electrons in the laser plasma interaction (LPI) with a gold cone and their subsequent transport into a copper wire have been studied using a kJ-class intense laser pulse, OMEGA EP (850 J, 10 ps). Weobserved that the laser-pulse-energy-normalized copper K signal from the Cu wire attached to the Au cone is significantly reduced (by a factor of 5) as compared to that from identical targets using the Titan laser (150 J, 0.7 ps) with 60 × less energy in the prepulse. We conclude that the decreased coupling is due to increased prepulse energy rather than 10 ps pulse duration, for which this effect has not been previously explored. The collisional particle-in-cell code PICLS demonstrates that the preformed plasma has a significant impact on generation of electrons and their transport. In particular, a longer scale length preplasma significantly reduces the energy coupling from the intense laser to the wire due to the larger offset distance between the relativistic critical density surface and the cone tip as well as a wider divergence of source electrons. We also observed that laser-driven plasma ionization increase in the LPI region can potentially alter the electron density profile during the laser interaction, forcing the electron source to be moved farther away from the cone tip which contributes to the reduction of energy coupling. © IOP Publishing and Deutsche Physikalische Gesellschaft.


Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals.

Science 341 (2013) 56-59

JN Clark, L Beitra, G Xiong, A Higginbotham, DM Fritz, HT Lemke, D Zhu, M Chollet, GJ Williams, M Messerschmidt, B Abbey, RJ Harder, AM Korsunsky, JS Wark, IK Robinson

Key insights into the behavior of materials can be gained by observing their structure as they undergo lattice distortion. Laser pulses on the femtosecond time scale can be used to induce disorder in a "pump-probe" experiment with the ensuing transients being probed stroboscopically with femtosecond pulses of visible light, x-rays, or electrons. Here we report three-dimensional imaging of the generation and subsequent evolution of coherent acoustic phonons on the picosecond time scale within a single gold nanocrystal by means of an x-ray free-electron laser, providing insights into the physics of this phenomenon. Our results allow comparison and confirmation of predictive models based on continuum elasticity theory and molecular dynamics simulations.


Molecular dynamics simulations of shock-induced deformation twinning of a body-centered-cubic metal

PHYSICAL REVIEW B 88 (2013) ARTN 104105

A Higginbotham, MJ Suggit, EM Bringa, P Erhart, JA Hawreliak, G Mogni, N Park, BA Remington, JS Wark


Effect of collisions on amplification of laser beams by Brillouin scattering in plasmas

Physics of Plasmas 20 (2013)

KA Humphrey, RMGM Trines, F Fiuza, DC Speirs, P Norreys, RA Cairns, LO Silva, R Bingham

We report on particle in cell simulations of energy transfer between a laser pump beam and a counter-propagating seed beam using the Brillouin scattering process in uniform plasma including collisions. The results presented show that the ion acoustic waves excited through naturally occurring Brillouin scattering of the pump field are preferentially damped without affecting the driven Brillouin scattering process resulting from the beating of the pump and seed fields together. We find that collisions, including the effects of Landau damping, allow for a more efficient transfer of energy between the laser beams, and a significant reduction in the amount of seed pre-pulse produced. © 2013 AIP Publishing LLC.


FLASH hydrodynamic simulations of experiments to explore the generation of cosmological magnetic fields

High Energy Density Physics 9 (2013) 75-81

A Scopatz, M Fatenejad, N Flocke, G Gregori, M Koenig, DQ Lamb, D Lee, J Meinecke, A Ravasio, P Tzeferacos, K Weide, R Yurchak

We report the results of FLASH hydrodynamic simulations of the experiments conducted by the University of Oxford High Energy Density Laboratory Astrophysics group and its collaborators at the Laboratoire pour l'Utilisation de Lasers Intenses (LULI). In these experiments, a long-pulse laser illuminates a target in a chamber filled with Argon gas, producing shock waves that generate magnetic fields via the Biermann battery mechanism. The simulations show that the result of the laser illuminating the target is a series of complex hydrodynamic phenomena. © 2012 Elsevier B.V.


Electron–positron pair creation in burning thermonuclear plasmas

High Energy Density Physics 9 (2013) 480-483

SJ Rose


Kinetic simulations of the heating of solid density plasma by femtosecond laser pulses

High Energy Density Physics 9 (2013) 38-41

M Sherlock, EG Hill, SJ Rose


The effect of phase front deformation on the growth of the filamentation instability in laser-plasma interactions

New Journal of Physics 15 (2013)

E Higson, R Trines, J Jiang, R Bingham, KL Lancaster, JR Davies, PA Norreys

Laser pulses of 0.9 kJ/1 ns/1053 nm were focused onto low-Z plastic targets in both spherical and planar geometry. The uniformity of the resulting plasma production was studied using x-ray pinhole imaging. Evidence is provided suggesting that thermal filamentation starts to occur for irradiances on the target of Iλ2 1014 W cm-2 μm 2, even on deployment of phase plates to improve the focal spot spatial uniformity. The experiments are supported by both analytical modelling and two-dimensional particle-in-cell simulations. The implications for the applications of laser-plasma interactions that require high degrees of uniform irradiation are discussed. © IOP Publishing and Deutsche Physikalische Gesellschaft.


Quantum hydrodynamics of strongly coupled electron fluids

PHYSICAL REVIEW E 85 (2012) ARTN 046408

R Schmidt, BJB Crowley, J Mithen, G Gregori


Resonant Kα spectroscopy of solid-density aluminum plasmas

Physical Review Letters 109 (2012)

BI Cho, K Engelhorn, SM Vinko, HK Chung, O Ciricosta, DS Rackstraw, RW Falcone, CRD Brown, T Burian, J Chalupský, C Graves, V Hájková, A Higginbotham, L Juha, J Krzywinski, HJ Lee, M Messersmidt, C Murphy, Y Ping, N Rohringer, A Scherz, W Schlotter, S Toleikis, JJ Turner, L Vysin, T Wang, B Wu, U Zastrau, D Zhu, RW Lee, B Nagler, JS Wark, PA Heimann

The x-ray intensities made available by x-ray free electron lasers (FEL) open up new x-ray matter interaction channels not accessible with previous sources. We report here on the resonant generation of Kα emission, that is to say the production of copious Kα radiation by tuning the x-ray FEL pulse to photon energies below that of the K edge of a solid aluminum sample. The sequential absorption of multiple photons in the same atom during the 80 fs pulse, with photons creating L-shell holes and then one resonantly exciting a K-shell electron into one of these holes, opens up a channel for the Kα production, as well as the absorption of further photons. We demonstrate rich spectra of such channels, and investigate the emission produced by tuning the FEL energy to the K-L transitions of those highly charged ions that have transition energies below the K edge of the cold material. The spectra are sensitive to x-ray intensity dependent opacity effects, with ions containing L-shell holes readily reabsorbing the Kα radiation. © 2012 American Physical Society.


Characterizing counter-streaming interpenetrating plasmas relevant to astrophysical collisionless shocks

Physics of Plasmas 19 (2012)

JS Ross, SH Glenzer, P Amendt, R Berger, L Divol, NL Kugland, OL Landen, C Plechaty, B Remington, D Ryutov, W Rozmus, DH Froula, G Fiksel, C Sorce, Y Kuramitsu, T Morita, Y Sakawa, H Takabe, RP Drake, M Grosskopf, C Kuranz, G Gregori, J Meinecke, CD Murphy, M Koenig, A Pelka, A Ravasio, T Vinci, E Liang, R Presura, A Spitkovsky, F Miniati, HS Park

A series of Omega experiments have produced and characterized high velocity counter-streaming plasma flows relevant for the creation of collisionless shocks. Single and double CH2 foils have been irradiated with a laser intensity of ∼ 1016 W/cm2. The laser ablated plasma was characterized 4 mm from the foil surface using Thomson scattering. A peak plasma flow velocity of 2000 km/s, an electron temperature of ∼ 110 eV, an ion temperature of ∼ 30 eV, and a density of ∼ 1018 cm -3 were measured in the single foil configuration. Significant increases in electron and ion temperatures were seen in the double foil geometry. The measured single foil plasma conditions were used to calculate the ion skin depth, c/ωpi ∼ 0.16 mm, the interaction length, lint, of ∼ 8 mm, and the Coulomb mean free path, λmfp ∼ 27 mm. With c/ωpi ≪ l int ≪λmfp, we are in a regime where collisionless shock formation is possible. © 2012 American Institute of Physics.


Nanosecond white-light Laue diffraction measurements of dislocation microstructure in shock-compressed single-crystal copper.

Nat Commun 3 (2012) 1224-

MJ Suggit, A Higginbotham, JA Hawreliak, G Mogni, G Kimminau, P Dunne, AJ Comley, N Park, BA Remington, JS Wark

Under uniaxial high-stress shock compression it is believed that crystalline materials undergo complex, rapid, micro-structural changes to relieve the large applied shear stresses. Diagnosing the underlying mechanisms involved remains a significant challenge in the field of shock physics, and is critical for furthering our understanding of the fundamental lattice-level physics, and for the validation of multi-scale models of shock compression. Here we employ white-light X-ray Laue diffraction on a nanosecond timescale to make the first in situ observations of the stress relaxation mechanism in a laser-shocked crystal. The measurements were made on single-crystal copper, shocked along the [001] axis to peak stresses of order 50 GPa. The results demonstrate the presence of stress-dependent lattice rotations along specific crystallographic directions. The orientation of the rotations suggests that there is double slip on conjugate systems. In this model, the rotation magnitudes are consistent with defect densities of order 10(12) cm(-2).


Self-consistent measurement of the equation of state of liquid deuterium

High Energy Density Physics 8 (2012) 76-80

K Falk, SP Regan, J Vorberger, MA Barrios, TR Boehly, DE Fratanduono, SH Glenzer, DG Hicks, SX Hu, CD Murphy, PB Radha, S Rothman, AP Jephcoat, JS Wark, DO Gericke, G Gregori

We combine experiments and theoretical models to characterize warm dense deuterium. A shockwave was driven in a planar target by the OMEGA laser without a standard pusher making the analysis independent of a quartz or aluminium pressure standard. The conditions of the shocked material were diagnosed with VISAR and optical pyrometry which yields the shock velocity (16.9 ± 0.9 km/s) and the temperature (0.57 ± 0.05 eV). We find a self-consistent description of the data when using ab initio simulations (DFT-MD), but not for other equation of state (EOS) models tested. © 2011 Elsevier B.V.


Comparative merits of the memory function and dynamic local-field correction of the classical one-component plasma

PHYSICAL REVIEW E 85 (2012) ARTN 056407

JP Mithen, J Daligault, G Gregori


Thomson scattering in short pulse laser experiments

Physics of Plasmas 19 (2012) 083302-083302

EG Hill, SJ Rose


Molecular dynamics simulations of ramp-compressed copper

PHYSICAL REVIEW B 85 (2012) ARTN 024112

A Higginbotham, J Hawreliak, EM Bringa, G Kimminau, N Park, E Reed, BA Remington, JS Wark

Pages