Publications


Inferring the electron temperature and density of shocked liquid deuterium using inelastic X-ray scattering

Journal of Physics: Conference Series 244 (2010)

SP Regan, PB Radha, TR Boehly, T Doeppner, K Falk, SH Glenzer, VN Goncharov, G Gregori, OL Landen, RL McCrory, DD Meyerhofer, P Neumayer, TC Sangster, VA Smalyuk

An experiment designed to launch laser-ablation-driven shock waves (10 to 70 Mbar) in a planar liquid-deuterium target on the OMEGA Laser System and to diagnose the shocked conditions using inelastic x-ray scattering is described. The electron temperature (Te) is inferred from the Doppler-broadened Compton-downshifted peak of the noncollective (αs = 1kλD > 1) x-ray scattering for Te > T Fermi. The electron density (ne) is inferred from the downshifted plasmon peak of the collective (αscatter > 1) x-ray scattering. A cylindrical layer of liquid deuterium is formed in a cryogenic cell with 8-μm-thick polyimide windows. The polyimide ablator is irradiated with peak intensities in the range of 1013 to 10 15 W/cm2 and shock waves are launched. Predictions from a 1-D hydrodynamics code show the shocked deuterium has a thickness of ∼0.1 mm with spatially uniform conditions. For the drive intensities under consideration, electron density up to ∼5 × 1023 cm -3 and electron temperature in the range of 10 to 25 eV are predicted. A laser-irradiated saran foil produces Cl Ly αemission. The spectrally resolved x-ray scattering is recorded at 90° for the noncollective scattering and at 40° for the collective scattering with a highly oriented pyrolytic graphite (HOPG) crystal spectrometer and an x-ray framing camera. © 2010 IOP Publishing Ltd.


The HiPER experimental road map

AIP Conference Proceedings 1209 (2010) 129-133

D Batani, S Baton, J Badziak, J Davies, L Gizzi, L Hallo, P Norreys, M Roth, J Santos, V Tickhoncuk, N Woolsey

WP10 is one of the working packages of the HiPER project and it has the goal of addressing, in a systematic and programmatic way, some of the key experimental uncertainties on the way towards fast ignition (and shock ignition) in a perspective of risk reduction, so to contribute to the definition of the basic characteristics of the HiPER project. The paper describes the key points contained in the short term HiPER experimental road map, as well as the results of two first experiments performed in "HiPER dedicated time slots" in European Laser Facilities. © 2010 American Institute of Physics.


Measurement of the dynamic response of compressed hydrogen by inelastic X-ray scattering

Journal of Physics: Conference Series 244 (2010)

K Falk, AP Jephcoat, BJB Crowley, RR Fäustlin, C Fortmann, FY Khattak, AK Kleppe, D Riley, S Toleikis, J Wark, H Wilhelm, G Gregori

Measurement of the dynamic properties of hydrogen and helium under extreme pressures is a key to understanding the physics of planetary interiors. The inelastic scattering signal from statically compressed hydrogen inside diamond anvil cells at 2.8 GPa and 6.4 GPa was measured at the Diamond Light Source synchrotron facility in the UK. The first direct measurement of the local field correction to the Coulomb interactions in degenerate plasmas was obtained from spectral shifts in the scattering data and compared to predictions by the Utsumi-Ichimaru theory for degenerate electron liquids. © 2010 IOP Publishing Ltd.


Phonon instabilities in uniaxially compressed fcc metals as seen in molecular dynamics simulations

PHYSICAL REVIEW B 81 (2010) ARTN 092102

G Kimminau, P Erhart, EM Bringa, B Remington, JS Wark


Electronic structure of an XUV photogenerated solid-density aluminum plasma.

Phys Rev Lett 104 (2010) 225001-

SM Vinko, U Zastrau, S Mazevet, J Andreasson, S Bajt, T Burian, J Chalupsky, HN Chapman, J Cihelka, D Doria, T Döppner, S Düsterer, T Dzelzainis, RR Fäustlin, C Fortmann, E Förster, E Galtier, SH Glenzer, S Göde, G Gregori, J Hajdu, V Hajkova, PA Heimann, R Irsig, L Juha, M Jurek, J Krzywinski, T Laarmann, HJ Lee, RW Lee, B Li, KH Meiwes-Broer, JP Mithen, B Nagler, AJ Nelson, A Przystawik, R Redmer, D Riley, F Rosmej, R Sobierajski, F Tavella, R Thiele, J Tiggesbäumker, S Toleikis, T Tschentscher, L Vysin, TJ Whitcher, S White, JS Wark

By use of high intensity XUV radiation from the FLASH free-electron laser at DESY, we have created highly excited exotic states of matter in solid-density aluminum samples. The XUV intensity is sufficiently high to excite an inner-shell electron from a large fraction of the atoms in the focal region. We show that soft-x-ray emission spectroscopy measurements reveal the electronic temperature and density of this highly excited system immediately after the excitation pulse, with detailed calculations of the electronic structure, based on finite-temperature density functional theory, in good agreement with the experimental results.


Soft X-ray scattering using FEL radiation for probing near-solid density plasmas at few electron volt temperatures

High Energy Density Physics 6 (2010) 15-20

S Toleikis, RR Fäustlin, L Cao, T Döppner, S Düsterer, E Förster, C Fortmann, SH Glenzer, S Göde, G Gregori, R Irsig, T Laarmann, HJ Lee, B Li, J Mithen, K-H Meiwes-Broer, A Przystawik, P Radcliffe, R Redmer, F Tavella, R Thiele, J Tiggesbäumker, NX Truong, I Uschmann, U Zastrau, T Tschentscher

We report on soft X-ray scattering experiments on cryogenic hydrogen and simple metal samples. As a source of intense, ultrashort soft X-ray pulses we have used free-electron laser radiation at 92 eV photon energy from FLASH at DESY, Hamburg. X-ray pulses with energies up to 150 μJ and durations 15-50 fs provide interaction with the sample leading simultaneously to plasma formation and scattering. Experiments exploiting both of these interactions have been carried out, using the same experimental setup. Firstly, recording of soft X-ray inelastic scattering from near-solid density hydrogen plasmas at few electron volt temperatures confirms the feasibility of this diagnostics technique. Secondly, the soft X-ray excitation of few electron volt solid-density plasmas in bulk metal samples could be studied by recording soft X-ray line and continuum emission integrated over emission times from fs to ns. © 2009 Elsevier B.V.


Hot electron generation and transport using Kα emission

Journal of Physics: Conference Series 244 (2010)

KU Akli, RB Stephens, MH Key, T Bartal, FN Beg, S Chawla, CD Chen, R Fedosejevs, RR Freeman, H Friesen, E Giraldez, JS Green, DS Hey, DP Higginson, J Hund, LC Jarrott, GE Kemp, JA King, A Kryger, K Lancaster, S Lepape, A Link, T Ma, AJ MacKinnon, AG MacPhee, HS McLean, C Murphy, PA Norreys, V Ovchinnikov, PK Patel, Y Ping, H Sawada, D Schumacher, W Theobald, YY Tsui, LD Van Woerkom, MS Wei, B Westover, T Yabuuchi

We have conducted experiments on both the Vulcan and Titan laser facilities to study hot electron generation and transport in the context of fast ignition. Cu wires attached to Al cones were used to investigate the effect on coupling efficiency of plasma surround and the pre-formed plasma inside the cone. We found that with thin cones 15% of laser energy is coupled to the 40μm diameter wire emulating a 40μm fast ignition spot. Thick cone walls, simulating plasma in fast ignition, reduce coupling by x4. An increase of pre-pulse level inside the cone by a factor of 50 reduces coupling by a factor of 3. © 2010 IOP Publishing Ltd.


Bragg diffraction using a 100 ps 17.5 keV x-ray backlighter and the Bragg diffraction imager

REVIEW OF SCIENTIFIC INSTRUMENTS 81 (2010)

BR Maddox, H-S Park, J Hawreliak, A Elsholz, R Van Maren, BA Remington, A Comley, JS Wark


Observation of ultrafast nonequilibrium collective dynamics in warm dense hydrogen.

Phys Rev Lett 104 (2010) 125002-

RR Fäustlin, T Bornath, T Döppner, S Düsterer, E Förster, C Fortmann, SH Glenzer, S Göde, G Gregori, R Irsig, T Laarmann, HJ Lee, B Li, KH Meiwes-Broer, J Mithen, B Nagler, A Przystawik, H Redlin, R Redmer, H Reinholz, G Röpke, F Tavella, R Thiele, J Tiggesbäumker, S Toleikis, I Uschmann, SM Vinko, T Whitcher, U Zastrau, B Ziaja, T Tschentscher

We investigate ultrafast (fs) electron dynamics in a liquid hydrogen sample, isochorically and volumetrically heated to a moderately coupled plasma state. Thomson scattering measurements using 91.8 eV photons from the free-electron laser in Hamburg (FLASH at DESY) show that the hydrogen plasma has been driven to a nonthermal state with an electron temperature of 13 eV and an ion temperature below 0.1 eV, while the free-electron density is 2.8x10{20} cm{-3}. For dense plasmas, our experimental data strongly support a nonequilibrium kinetics model that uses impact ionization cross sections based on classical free-electron collisions.


Probing near-solid density plasmas using soft x-ray scattering

Journal of Physics B: Atomic, Molecular and Optical Physics 43 (2010)

S Toleikis, T Bornath, T Döppner, S Düsterer, RR Fäustlin, E Förster, C Fortmann, SH Glenzer, S Göde, G Gregori, R Irsig, T Laarmann, HJ Lee, B Li, K-H Meiwes-Broer, J Mithen, B Nagler, A Przystawik, P Radcliffe, H Redlin, R Redmer, H Reinholz, G Röpke, F Tavella, R Thiele, J Tiggesbäumker, I Uschmann, SM Vinko, T Whitcher, U Zastrau, B Ziaja, T Tschentscher

X-ray scattering using highly brilliant x-ray free-electron laser (FEL) radiation provides new access to probe free-electron density, temperature and ionization in near-solid density plasmas. First experiments at the soft x-ray FEL FLASH at DESY, Hamburg, show the capabilities of this technique. The ultrashort FEL pulses in particular can probe equilibration phenomena occurring after excitation of the plasma using ultrashort optical laser pumping. We have investigated liquid hydrogen and find that the interaction of very intense soft x-ray FEL radiation alone heats the sample volume. As the plasma establishes, photons from the same pulse undergo scattering, thus probing the transient, warm dense matter state. We find a free-electron density of (2.6 ± 0.2) × 1020 cm-3 and an electron temperature of 14 ± 3.5 eV. In pump-probe experiments, using intense optical laser pulses to generate more extreme states of matter, this interaction of the probe pulse has to be considered in the interpretation of scattering data. In this paper, we present details of the experimental setup at FLASH and the diagnostic methods used to quantitatively analyse the data. © 2010 IOP Publishing Ltd.


Micron-scale fast electron filaments and recirculation determined from rear-side optical emission in high-intensity laser-solid interactions

New Journal of Physics 12 (2010)

C Bellei, SR Nagel, S Kar, A Henig, S Kneip, C Palmer, A Sävert, L Willingale, D Carroll, B Dromey, JS Green, K Markey, P Simpson, RJ Clarke, H Lowe, D Neely, C Spindloe, M Tolley, MC Kaluza, SPD Mangles, P McKenna, PA Norreys, J Schreiber, M Zepf, JR Davies, K Krushelnick, Z Najmudin

The transport of relativistic electrons generated in the interaction of petawatt class lasers with solid targets has been studied through measurements of the second harmonic optical emission from their rear surface. The high degree of polarization of the emission indicates that it is predominantly optical transition radiation (TR). A halo that surrounds the main region of emission is also polarized and is attributed to the effect of electron recirculation. The variation of the polarization state and intensity of radiation with the angle of observation indicates that the emission of TR is highly directional and provides evidence for the presence of μm-size filaments. A brief discussion on the possible causes of such a fine electron beam structure is given. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.


New developments in energy transfer and transport studies in relativistic laser-plasma interactions

Plasma Physics and Controlled Fusion 52 (2010)

PA Norreys, JS Green, KL Lancaster, APL Robinson, RHH Scott, F Perez, H-P Schlenvoight, S Baton, S Hulin, B Vauzour, JJ Santos, DJ Adams, K Markey, B Ramakrishna, M Zepf, MN Quinn, XH Yuan, P McKenna, J Schreiber, JR Davies, DP Higginson, FN Beg, C Chen, T Ma, P Patel

Two critical issues related to the success of fast ignition inertial fusion have been vigorously investigated in a co-ordinated campaign in the European Union and the United States. These are the divergence of the fast electron beam generated in intense, PW laser-plasma interactions and the fast electron energy transport with the use of high intensity contrast ratio laser pulses. Proof is presented that resistivity gradient-induced magnetic fields can guide fast electrons over significant distances in (initially) cold metallic targets. Comparison of experiments undertaken in both France and the United States suggests that an important factor in obtaining efficient coupling into dense plasma is the irradiation with high intensity contrast ratio laser pulses, rather than the colour of the laser pulse itself. © 2010 IOP Publishing Ltd.


Laser-driven fast electron collimation in targets with resistivity boundary

Physical Review Letters 105 (2010)

B Ramakrishna, S Kar, APL Robinson, DJ Adams, K Markey, MN Quinn, XH Yuan, P McKenna, KL Lancaster, JS Green, RHH Scott, PA Norreys, J Schreiber, M Zepf

We demonstrate experimentally that the relativistic electron flow in a dense plasma can be efficiently confined and guided in targets exhibiting a high-resistivity-core-low-resistivity-cladding structure analogous to optical waveguides. The relativistic electron beam is shown to be confined to an area of the order of the core diameter (50μm), which has the potential to substantially enhance the coupling efficiency of electrons to the compressed fusion fuel in the Fast Ignitor fusion in full-scale fusion experiments. © 2010 The American Physical Society.


Applications of the wave kinetic approach: From laser wakefields to drift wave turbulence

Journal of Plasma Physics 76 (2010) 903-914

RMGM Trines, R Bingham, LO Silva, JT Mendonça, PK Shukla, CD Murphy, MW Dunlop, JA Davies, R Bamford, A Vaivads, PA Norreys

Nonlinear wave-driven processes in plasmas are normally described by either a monochromatic pump wave that couples to other monochromatic waves, or as a random phase wave coupling to other random phase waves. An alternative approach involves a random or broadband pump coupling to monochromatic and/or coherent structures in the plasma. This approach can be implemented through the wave-kinetic model. In this model, the incoming pump wave is described by either a bunch (for coherent waves) or a sea (for random phase waves) of quasi-particles. This approach has been applied to both photon acceleration in laser wakefields and drift wave turbulence in magnetized plasma edge configurations. Numerical simulations have been compared to experiments, varying from photon acceleration to drift mode-zonal flow turbulence, and good qualitative correspondences have been found in all cases. © 2010 Cambridge University Press.


Metal deformation and phase transitions at extremely high strain rates

MRS BULLETIN 35 (2010) 999-1006

RE Rudd, TC Germann, BA Remington, JS Wark


Relativistic quasimonoenergetic positron jets from intense laser-solid interactions.

Phys Rev Lett 105 (2010) 015003-

H Chen, SC Wilks, DD Meyerhofer, J Bonlie, CD Chen, SN Chen, C Courtois, L Elberson, G Gregori, W Kruer, O Landoas, J Mithen, J Myatt, CD Murphy, P Nilson, D Price, M Schneider, R Shepherd, C Stoeckl, M Tabak, R Tommasini, P Beiersdorfer

Detailed angle and energy resolved measurements of positrons ejected from the back of a gold target that was irradiated with an intense picosecond duration laser pulse reveal that the positrons are ejected in a collimated relativistic jet. The laser-positron energy conversion efficiency is ∼2×10{-4}. The jets have ∼20 degree angular divergence and the energy distributions are quasimonoenergetic with energy of 4 to 20 MeV and a beam temperature of ∼1  MeV. The sheath electric field on the surface of the target is shown to determine the positron energy. The positron angular and energy distribution is controlled by varying the sheath field, through the laser conditions and target geometry.


The Vulcan 10 PW project

Journal of Physics: Conference Series 244 (2010)

C Hernandez-Gomez, SP Blake, O Chekhlov, RJ Clarke, AM Dunne, M Galimberti, S Hancock, R Heathcote, P Holligan, A Lyachev, P Matousek, IO Musgrave, D Neely, PA Norreys, I Ross, Y Tang, TB Winstone, BE Wyborn, J Collier

The aim of this project is to establish a 10 PW facility on the Vulcan laser system capable of being focussed to intensities of at least 10 23 Wcm-2 and integrate this into a flexible and unique user facility This paper will present progress made in Phase one developing the 10PW Front End as well as the concept for the new Vulcan 10 PW facility. The new facility will be configured in a unique way to maximise the scientific opportunities presented through a combination with the existing capabilities already established on Vulcan. This ground breaking development will open up a range of new scientific opportunities. © 2010 IOP Publishing Ltd.


Controlling implosion symmetry around a deuterium-tritium target

Science 327 (2010) 1208-1210

PA Norreys

Fusion power is a step closer with the demonstration of control over the extreme thermal radiation pressure created by high-power laser beams within a cavity.


Design of the 10 PW OPCPA facility for the vulcan laser

Optics InfoBase Conference Papers (2010)

I Musgrave, O Chekhlov, J Collier, R Clarke, A Dunne, S Hancock, R Heathcote, C Hernandez-Gomez, M Galimberti, A Lyachev, P Matousek, D Neely, P Norreys, I Ross, Y Tang, T Winstone, G New

We present the progress made in developing 10PW OPCPA facility for the Vulcan laser to produce pulses with focused intensities >1023 Wcm-2. This power level will be delivered by generating pulses with >300J in 30fs. These pulses will be delivered to two target areas: in one target area they will be combined with the existing Vulcan Petawatt beamline and a new target area will be created for high intensity interactions. © 2010 Optical Society of America.


Design of the 10 PW OPCPA facility for the vulcan laser

Optics InfoBase Conference Papers (2010)

I Musgrave, O Chekhlov, J Collier, R Clarke, A Dunne, S Hancock, R Heathcote, C Hernandez-Gomez, M Galimberti, A Lyachev, P Matousek, D Neely, P Norreys, I Ross, Y Tang, T Winstone, G New

We present the progress made in developing 10PW OPCPA facility for the Vulcan laser to produce pulses with focused intensities >1023 Wcm-2. This power level will be delivered by generating pulses with >300J in 30fs. These pulses will be delivered to two target areas: in one target area they will be combined with the existing Vulcan Petawatt beamline and a new target area will be created for high intensity interactions. © 2010 Optical Society of America.