Publications associated with Condensed Matter Theory

The Power Spectrum of Ionic Nanopore Currents: The Role of Ion Correlations

Nano Letters 16 (2016) 2205-2212

M Zorkot, R Golestanian, DJ Bonthuis

© 2016 American Chemical Society. We calculate the power spectrum of electric-field-driven ion transport through nanometer-scale membrane pores using both linearized mean-field theory and Langevin dynamics simulations. Remarkably, the linearized mean-field theory predicts a plateau in the power spectral density at low frequency ω, which is confirmed by the simulations at low ion concentration. At high ion concentration, however, the power spectral density follows a power law that is reminiscent of the 1/ω α dependence found experimentally at low frequency. On the basis of simulations with and without ion-ion interactions, we attribute the low-frequency power-law dependence to ion-ion correlations. We show that neither a static surface charge density, nor an increased pore length, nor an increased ion valency have a significant effect on the shape of the power spectral density at low frequency.

Show full publication list