Publications by Gianluca Gregori


Electron-ion equilibration in ultrafast heated graphite.

Physical review letters 112 (2014) 145005-

TG White, NJ Hartley, B Borm, BJ Crowley, JW Harris, DC Hochhaus, T Kaempfer, K Li, P Neumayer, LK Pattison, F Pfeifer, S Richardson, AP Robinson, I Uschmann, G Gregori

We have employed fast electrons produced by intense laser illumination to isochorically heat thermal electrons in solid density carbon to temperatures of ∼10,000  K. Using time-resolved x-ray diffraction, the temperature evolution of the lattice ions is obtained through the Debye-Waller effect, and this directly relates to the electron-ion equilibration rate. This is shown to be considerably lower than predicted from ideal plasma models. We attribute this to strong ion coupling screening the electron-ion interaction.


Turbulent amplification of magnetic fields in laboratory laser-produced shock waves

NATURE PHYSICS 10 (2014) 520-524

J Meinecke, HW Doyle, F Miniati, AR Bell, R Bingham, R Crowston, RP Drake, M Fatenejad, M Koenig, Y Kuramitsu, CC Kuranz, DQ Lamb, D Lee, MJ MacDonald, CD Murphy, H-S Park, A Pelka, A Ravasio, Y Sakawa, AA Schekochihin, A Scopatz, P Tzeferacos, WC Wan, NC Woolsey, R Yurchak, B Reville, G Gregori


Exploring Mbar shock conditions and isochorically heated aluminum at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (invited)

Review of Scientific Instruments American Institute of Physics Inc. 85 (2014)

LB Fletcher, HJ Lee, B Barbrel, M Gauthier, E Galtier, B Nagler, T Döppner, S Lepape, T Ma, A Pak, D Turnbull, T White, G Gregori, M Wei, RW Falcone, P Heimann, U Zastrau, JB Hastings, SH Glenzer

Recent experiments performed at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat and scatter x-rays from aluminum. Collective x-ray Thomson scattering spectra show a well-resolved plasmon feature that is down-shifted in energy by 19 eV. In addition, Mbar shock pressures from laser-compressed aluminum foils using velocity interferometer system for any reflector have been measured. The combination of experiments fully demonstrates the possibility to perform warm dense matter studies at the LCLS with unprecedented accuracy and precision. © 2014 AIP Publishing LLC.


Evidence for a glassy state in strongly driven carbon.

Scientific reports 4 (2014) 5214-

CR Brown, DO Gericke, M Cammarata, BI Cho, T Döppner, K Engelhorn, E Förster, C Fortmann, D Fritz, E Galtier, SH Glenzer, M Harmand, P Heimann, NL Kugland, DQ Lamb, HJ Lee, RW Lee, H Lemke, M Makita, A Moinard, CD Murphy, B Nagler, P Neumayer, KU Plagemann, R Redmer, D Riley, FB Rosmej, P Sperling, S Toleikis, SM Vinko, J Vorberger, S White, TG White, K Wünsch, U Zastrau, D Zhu, T Tschentscher, G Gregori

Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid.


Electron-phonon equilibration in laser-heated gold films

PHYSICAL REVIEW B 90 (2014) ARTN 014305

TG White, P Mabey, DO Gericke, NJ Hartley, HW Doyle, D McGonegle, DS Rackstraw, A Higginbotham, G Gregori


Enhanced proton beam collimation in the ultra-intense short pulse regime

PLASMA PHYSICS AND CONTROLLED FUSION 56 (2014) ARTN 084001

JS Green, NP Dover, M Borghesi, CM Brenner, FH Cameron, DC Carroll, PS Foster, P Gallegos, G Gregori, P McKenna, CD Murphy, Z Najmudin, CAJ Palmer, R Prasad, L Romagnani, KE Quinn, J Schreiber, MJV Streeter, S Ter-Avetisyan, O Tresca, M Zepf, D Neely


Resolving ultrafast heating of dense cryogenic hydrogen.

Physical review letters 112 (2014) 105002-

U Zastrau, P Sperling, M Harmand, A Becker, T Bornath, R Bredow, S Dziarzhytski, T Fennel, LB Fletcher, E Förster, S Göde, G Gregori, V Hilbert, D Hochhaus, B Holst, T Laarmann, HJ Lee, T Ma, JP Mithen, R Mitzner, CD Murphy, M Nakatsutsumi, P Neumayer, A Przystawik, S Roling, M Schulz, B Siemer, S Skruszewicz, J Tiggesbäumker, S Toleikis, T Tschentscher, T White, M Wöstmann, H Zacharias, T Döppner, SH Glenzer, R Redmer

We report on the dynamics of ultrafast heating in cryogenic hydrogen initiated by a ≲300  fs, 92 eV free electron laser x-ray burst. The rise of the x-ray scattering amplitude from a second x-ray pulse probes the transition from dense cryogenic molecular hydrogen to a nearly uncorrelated plasmalike structure, indicating an electron-ion equilibration time of ∼0.9  ps. The rise time agrees with radiation hydrodynamics simulations based on a conductivity model for partially ionized plasma that is validated by two-temperature density-functional theory.


Observations of continuum depression in warm dense matter with x-ray Thomson scattering.

Physical review letters 112 (2014) 145004-

LB Fletcher, AL Kritcher, A Pak, T Ma, T Döppner, C Fortmann, L Divol, OS Jones, OL Landen, HA Scott, J Vorberger, DA Chapman, DO Gericke, BA Mattern, GT Seidler, G Gregori, RW Falcone, SH Glenzer

Detailed measurements of the electron densities, temperatures, and ionization states of compressed CH shells approaching pressures of 50 Mbar are achieved with spectrally resolved x-ray scattering. Laser-produced 9 keV x-rays probe the plasma during the transient state of three-shock coalescence. High signal-to-noise x-ray scattering spectra show direct evidence of continuum depression in highly degenerate warm dense matter states with electron densities ne>1024  cm-3. The measured densities and temperatures agree well with radiation-hydrodynamic modeling when accounting for continuum lowering in calculations that employ detailed configuration accounting.


Equilibration dynamics and conductivity of warm dense hydrogen

PHYSICAL REVIEW E 90 (2014) ARTN 013104

U Zastrau, P Sperling, A Becker, T Bornath, R Bredow, T Doeppner, S Dziarzhytski, T Fennel, LB Fletcher, E Forster, C Fortmann, SH Glenzer, S Goede, G Gregori, M Harmand, V Hilbert, B Holst, T Laarmann, HJ Lee, T Ma, JP Mithen, R Mitzner, CD Murphy, M Nakatsutsumi, P Neumayer, A Przystawik, S Roling, M Schulz, B Siemer, S Skruszewicz, J Tiggesbaeumker, S Toleikis, T Tschentscher, T White, M Woestmann, H Zacharias, R Redmer


Turbulent amplification of magnetic fields in laboratory laser-produced shock waves

Nature Physics Nature Publishing Group 10 (2014) 520-524

J Meinecke, HW Doyle, F Miniati, AR Bell, R Bingham, R Crowston, RP Drake, M Fatenejad, M Koenig, Y Kuramitsu, CC Kuranz, DQ Lamb, D Lee, MJ Macdonald, CD Murphy, H-S Park, A Pelka, A Ravasio, Y Sakawa, AA Schekochihin, A Scopatz, P Tzeferacos, WC Wan, NC Woolsey, R Yurchak, B Reville, G Gregori

X-ray1-3 and radio4-6 observations of the supernova remnant Cassiopeia A reveal the presence of magnetic fields about 100 times stronger than those in the surrounding interstellar medium. Field coincident with the outer shock probably arises through a nonlinear feedback process involving cosmic rays2,7,8. The origin of the large magnetic field in the interior of the remnant is less clear but it is presumably stretched and amplified by turbulent motions. Turbulence may be generated by hydrodynamic instability at the contact discontinuity between the supernova ejecta and the circumstellar gas9. However, optical observations of Cassiopeia A indicate that the ejecta are interacting with a highly inhomogeneous, dense circumstellar cloud bank formed before the supernova explosion10-12. Herewe investigate the possibility that turbulent amplification is induced when the outer shock overtakes dense clumps in the ambient medium13-15. We report laboratory experiments that indicate the magnetic field is amplified when the shock interacts with a plastic grid. We show that our experimental results can explain the observed synchrotron emission in the interior of the remnant. The experiment also provides a laboratory example of magnetic field amplification by turbulence in plasmas, a physical process thought to occur in many astrophysical phenomena. © 2014 Macmillan Publishers Limited. All rights reserved.


Observations of strong ion-ion correlations in dense plasmas

PHYSICS OF PLASMAS 21 (2014) ARTN 056302

T Ma, L Fletcher, A Pak, DA Chapman, RW Falcone, C Fortmann, E Galtier, DO Gericke, G Gregori, J Hastings, OL Landen, S Le Pape, HJ Lee, B Nagler, P Neumayer, D Turnbull, J Vorberger, TG White, K Wuensch, U Zastrau, SH Glenzer, T Doeppner


Probing the complex ion structure in liquid carbon at 100 GPa

Physical Review Letters 111 (2013)

D Kraus, J Vorberger, DO Gericke, V Bagnoud, A Blažević, W Cayzac, A Frank, G Gregori, A Ortner, A Otten, F Roth, G Schaumann, D Schumacher, K Siegenthaler, F Wagner, K Wünsch, M Roth

We present the first direct experimental test of the complex ion structure in liquid carbon at pressures around 100 GPa, using spectrally resolved x-ray scattering from shock-compressed graphite samples. Our results confirm the structure predicted by ab initio quantum simulations and demonstrate the importance of chemical bonds at extreme conditions similar to those found in the interiors of giant planets. The evidence presented here thus provides a firmer ground for modeling the evolution and current structure of carbon-bearing icy giants like Neptune, Uranus, and a number of extrasolar planets. © 2013 American Physical Society.


Comparison between x-ray scattering and velocity-interferometry measurements from shocked liquid deuterium

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 87 (2013)

K Falk, BJB Crowley, CD Murphy, JS Wark, G Gregori, SP Regan, SX Hu, PB Radha, J Vorberger, DO Gericke, SH Glenzer, AP Jephcoat

The equation of state of light elements is essential to understand the structure of Jovian planets and inertial confinement fusion research. The Omega laser was used to drive a planar shock wave in the cryogenically cooled deuterium, creating warm dense matter conditions. X-ray scattering was used to determine the spectrum near the boundary of the collective and noncollective scattering regimes using a narrow band x-ray source in backscattering geometry. Our scattering spectra are thus sensitive to the individual electron motion as well as the collective plasma behavior and provide a measurement of the electron density, temperature, and ionization state. Our data are consistent with velocity-interferometry measurements previously taken on the same shocked deuterium conditions and presented by K. Falk. This work presents a comparison of the two diagnostic systems and offers a detailed discussion of challenges encountered. ©2013 American Physical Society.


Simulation of laser-driven, ablated plasma flows in collisionless shock experiments on OMEGA and the NIF

High Energy Density Physics 9 (2013) 192-197

MJ Grosskopf, RP Drake, CC Kuranz, EM Rutter, JS Ross, NL Kugland, C Plechaty, BA Remington, A Spitkovsky, L Gargate, G Gregori, A Bell, CD Murphy, J Meinecke, B Reville, Y Sakawa, Y Kuramitsu, H Takabe, DH Froula, G Fiksel, F Miniati, M Koenig, A Ravasio, E Liang, W Fu, N Woolsey, H-S Park

Experiments investigating the physics of interpenetrating, collisionless, ablated plasma flows have become an important area of research in the high-energy-density field. In order to evaluate the feasibility of designing experiments that will generate a collisionless shock mediated by the Weibel instability on the National Ignition Facility (NIF) laser, computer simulations using the Center for Radiative Shock Hydrodynamics (CRASH) radiation-hydrodynamics model have been carried out. This paper reports assessment of whether the experiment can reach the required scale size while maintaining the low interflow collisionality necessary for the collisionless shock to form. Comparison of simulation results with data from Omega experiments shows the ability of the CRASH code to model these ablated systems. The combined results indicate that experiments on the NIF are capable of reaching the regimes necessary for the formation of a collisionless shock in a laboratory experiment. © 2013.


High Mach-number collisionless shock driven by a laser with an external magnetic field

EPJ Web of Conferences 59 (2013)

T Morita, Y Sakawa, Y Kuramitsu, T Ide, K Nishio, M Kuwada, H Ide, K Tsubouchi, H Yoneda, A Nishida, T Namiki, T Norimatsu, K Tomita, K Nakayama, K Inoue, K Uchino, M Nakatsutsumi, A Pelka, M Koenig, Q Dong, D Yuan, G Gregori, H Takabe

Collisionless shocks are produced in counter-streaming plasmas with an external magnetic field. The shocks are generated due to an electrostatic field generated in counter-streaming laser-irradiated plasmas, as reported previously in a series of experiments without an external magnetic field [T. Morita et al., Phys. Plasmas, 17, 122702 (2010), Kuramitsu et al., Phys. Rev. Lett., 106, 175002 (2011)] via laser-irradiation of a double-CH-foil target. A magnetic field is applied to the region between two foils by putting an electro-magnet (∼10 T) perpendicular to the direction of plasma expansion. The generated shocks show different characteristics later in time (t > 20ns). © Owned by the authors, published by EDP Sciences, 2013.


Modeling HEDLA magnetic field generation experiments on laser facilities

High Energy Density Physics 9 (2013) 172-177

M Fatenejad, AR Bell, A Benuzzi-Mounaix, R Crowston, RP Drake, N Flocke, G Gregori, M Koenig, C Krauland, D Lamb, D Lee, JR Marques, J Meinecke, F Miniati, CD Murphy, H-S Park, A Pelka, A Ravasio, B Remington, B Reville, A Scopatz, P Tzeferacos, K Weide, N Woolsey, R Young, R Yurchak

The Flash Center is engaged in a collaboration to simulate laser driven experiments aimed at understanding the generation and amplification of cosmological magnetic fields using the FLASH code. In these experiments a laser illuminates a solid plastic or graphite target launching an asymmetric blast wave into a chamber which contains either Helium or Argon at millibar pressures. Induction coils placed several centimeters away from the target detect large scale magnetic fields on the order of tens to hundreds of Gauss. The time dependence of the magnetic field is consistent with generation via the Biermann battery mechanism near the blast wave. Attempts to perform simulations of these experiments using the FLASH code have uncovered previously unreported numerical difficulties in modeling the Biermann battery mechanism near shock waves which can lead to the production of large non-physical magnetic fields. We report on these difficulties and offer a potential solution. © 2012 Elsevier B.V.


Laboratory experiments on plasma jets in a magnetic field using high-power lasers

EPJ Web of Conferences 59 (2013)

K Nishio, Y Sakawa, Y Kuramitsu, T Morita, T Ide, M Kuwada, M Koga, T Kato, T Norimatsu, C Gregory, N Woolsey, C Murphy, G Gregori, K Schaar, A Diziere, M Koenig, A Pelka, S Wang, Q Dong, Y Li, H Takabe

The experiments to simulate astrophysical jet generation are performed using Gekko XII (GXII) HIPER laser system at the Institute of Laser Engineering. In the experiments a fast plasma flow generated by shooting a CH plane (10 μm thickness) is observed at the rear side of the plane. By separating the focal spot of the main beams, a non-uniform plasma is generated. The non-uniform plasma flow in an external magnetic field (0.2∼0.3 T) perpendicular to the plasma is more collimated than that without the external magnetic field. The plasma β, the ratio between the plasma and magnetic pressure, is ≠1, and the magnetic Reynolds number is ∼150 in the collimated plasma. It is considered that the magnetic field is distorted by the plasma flow and enhances the jet collimation. © Owned by the authors, published by EDP Sciences, 2013.


High-power laser experiments to study collisionless shock generation

EPJ Web of Conferences 59 (2013)

Y Sakawa, Y Kuramitsu, T Morita, T Kato, H Tanji, T Ide, K Nishio, M Kuwada, T Tsubouchi, H Ide, T Norimatsu, C Gregory, N Woolsey, K Schaar, C Murphy, G Gregori, A Diziere, A Pelka, M Koenig, S Wang, Q Dong, Y Li, H-S Park, S Ross, N Kugland, D Ryutov, B Remington, A Spitkovsky, D Froula, H Takabe

A collisionless Weibel-instability mediated shock in a self-generated magnetic field is studied using two-dimensional particle-in-cell simulation [Kato and Takabe, Astophys. J. Lett. 681, L93 (2008)]. It is predicted that the generation of the Weibel shock requires to use NIF-class high-power laser system. Collisionless electrostatic shocks are produced in counter-streaming plasmas using Gekko XII laser system [Kuramitsu et al., Phys. Rev. Lett. 106, 175002 (2011)]. A NIF facility time proposal is approved to study the formation of the collisionless Weibel shock. OMEGA and OMEGA EP experiments have been started to study the plasma conditions of counter-streaming plasmas required for the NIF experiment using Thomson scattering and to develop proton radiography diagnostics. © Owned by the authors, published by EDP Sciences, 2013.


X-ray scattering by many-particle systems

New Journal of Physics 15 (2013)

BJB Crowley, G Gregori

This paper reviews the treatment of high-frequency Thomson scattering in the non-relativistic and near-relativistic regimes with the primary purpose of understanding the nature of the frequency redistribution correction to the differential cross-section. This correction is generally represented by a factor involving the ratio ω α /ω β of the scattered (α) to primary (β) frequencies of the radiation. In some formulae given in the literature, the ratio appears squared, in others it does not. In Compton scattering, the frequency change is generally understood to be due to the recoil of the particle as a result of energy and momentum conservation in the photon-electron system. In this case, the Klein-Nishina formula gives the redistribution factor as . In the case of scattering by a many-particle system, however, the frequency and momentum changes are no longer directly interdependent but depend also upon the properties of the medium, which are encoded in the dynamic structure factor. We show that the redistribution factor explicit in the quantum cross-section (that seen by a photon) is ω α /ω β, which is not squared. Formulae for the many-body cross-section given in the literature, in which the factor is squared, can often be attributed to a different (classical) definition of the cross-section, though not all authors are explicit about which definition they are using. What is shown not to be true is that the structure factor simply gives the ratio of the many-electron to one-electron differential cross-sections, as is sometimes supposed. Mixing up the cross-section definitions can lead to errors when describing x-ray scattering. We illustrate the nature of the discrepancy by deriving the energy-integrated angular distributions, with first-order relativistic corrections, for classical and quantum scattering measurements, as well as the radiative opacity for photon diffusion in a Thomson-scattering medium, which is generally considered to be governed by quantum processes. © IOP Publishing and Deutsche Physikalische Gesellschaft.


Diffusive shock acceleration at laser-driven shocks: Studying cosmic-ray accelerators in the laboratory

New Journal of Physics 15 (2013)

B Reville, AR Bell, G Gregori

The non-thermal particle spectra responsible for the emission from many astrophysical systems are thought to originate from shocks via a first order Fermi process otherwise known as diffusive shock acceleration. The same mechanism is also widely believed to be responsible for the production of high energy cosmic rays. With the growing interest in collisionless shock physics in laser produced plasmas, the possibility of reproducing and detecting shock acceleration in controlled laboratory experiments should be considered. The various experimental constraints that must be satisfied are reviewed. It is demonstrated that several currently operating laser facilities may fulfil the necessary criteria to confirm the occurrence of diffusive shock acceleration of electrons at laser produced shocks. Successful reproduction of Fermi acceleration in the laboratory could open a range of possibilities, providing insight into the complex plasma processes that occur near astrophysical sources of cosmic rays. © IOP Publishing and Deutsche Physikalische Gesellschaft.