Publications by Gianluca Gregori


Nanosecond formation of diamond and lonsdaleite by shock compression of graphite.

Nature communications 7 (2016) 10970-

D Kraus, A Ravasio, M Gauthier, DO Gericke, J Vorberger, S Frydrych, J Helfrich, LB Fletcher, G Schaumann, B Nagler, B Barbrel, B Bachmann, EJ Gamboa, S Göde, E Granados, G Gregori, HJ Lee, P Neumayer, W Schumaker, T Döppner, RW Falcone, SH Glenzer, M Roth

The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.


Theory of density fluctuations in strongly radiative plasmas

PHYSICAL REVIEW E 93 (2016) ARTN 033201

JE Cross, P Mabey, DO Gericke, G Gregori


FLASH MHD simulations of experiments that study shock-generated magnetic fields

HIGH ENERGY DENSITY PHYSICS 17 (2015) 24-31

P Tzeferacos, M Fatenejad, N Flocke, C Graziani, G Gregori, DQ Lamb, D Lee, J Meinecke, A Scopatz, K Weide


Investigation of the solid-liquid phase transition of carbon at 150 GPa with spectrally resolved X-ray scattering

High Energy Density Physics 14 (2015) 38-43

J Helfrich, D Kraus, A Ortner, S Frydrych, G Schaumann, NJ Hartley, G Gregori, B Kettle, D Riley, DC Carroll, MM Notley, C Spindloe, M Roth


Laser-driven platform for generation and characterization of strong quasi-static magnetic fields

NEW JOURNAL OF PHYSICS 17 (2015) ARTN 083051

JJ Santos, M Bailly-Grandvaux, L Giuffrida, P Forestier-Colleoni, S Fujioka, Z Zhang, P Korneev, R Bouillaud, S Dorard, D Batani, M Chevrot, JE Cross, R Crowston, J-L Dubois, J Gazave, G Gregori, E d'Humieres, S Hulin, K Ishihara, S Kojima, E Loyez, J-R Marques, A Morace, P Nicolai, O Peyrusse, A Poye, D Raffestin, J Ribolzi, M Roth, G Schaumann, F Serres, VT Tikhonchuk, P Vacar, N Woolsey


Characterization of x-ray lens for use in probing high energy density states of matter

JOURNAL OF INSTRUMENTATION 10 (2015) ARTN P04010

P Mabey, NJ Hartley, HW Doyle, JE Cross, L Ceurvorst, A Savin, A Rigby, M Oliver, M Calvert, IJ Kim, D Riley, PA Norreys, CH Nam, DC Carroll, C Spindloe, G Gregori


Electron-ion temperature equilibration in warm dense tantalum

HIGH ENERGY DENSITY PHYSICS 14 (2015) 1-5

NJ Hartley, P Belancourt, DA Chapman, T Doeppner, RP Drake, DO Gericke, SH Glenzer, D Khaghani, S LePape, T Ma, P Neumayer, A Pak, L Peters, S Richardson, J Vorberger, TG White, G Gregori


Collisionless shock experiments with lasers and observation of Weibel instabilities

PHYSICS OF PLASMAS 22 (2015) ARTN 056311

H-S Park, CM Huntington, F Fiuza, RP Drake, DH Froula, G Gregori, M Koenig, NL Kugland, CC Kuranz, DQ Lamb, MC Levy, CK Li, J Meinecke, T Morita, RD Petrasso, BB Pollock, BA Remington, HG Rinderknecht, M Rosenberg, JS Ross, DD Ryutov, Y Sakawa, A Spitkovsky, H Takabe, DP Turnbull, P Tzeferacos, SV Weber, AB Zylstra


Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs.

Nature communications 6 (2015) 8742-

N Booth, AP Robinson, P Hakel, RJ Clarke, RJ Dance, D Doria, LA Gizzi, G Gregori, P Koester, L Labate, T Levato, B Li, M Makita, RC Mancini, J Pasley, PP Rajeev, D Riley, E Wagenaars, JN Waugh, NC Woolsey

Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. The inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.


Evidence of locally enhanced target heating due to instabilities of counter-streaming fast electron beams

PHYSICS OF PLASMAS 22 (2015) ARTN 020701

P Koester, N Booth, CA Cecchetti, H Chen, RG Evans, G Gregori, L Labate, T Levato, B Li, M Makita, J Mithen, CD Murphy, M Notley, R Pattathil, D Riley, N Woolsey, LA Gizzi


The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers

PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS 601 (2015) 1-34

G Gregori, B Reville, F Miniati


The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scattering

PHYSICS OF PLASMAS 22 (2015) ARTN 056307

D Kraus, J Vorberger, J Helfrich, DO Gericke, B Bachmann, V Bagnoud, B Barbrel, A Blazevic, DC Carroll, W Cayzac, T Doeppner, LB Fletcher, A Frank, S Frydrych, EJ Gamboa, M Gauthier, S Goede, E Granados, G Gregori, NJ Hartley, B Kettle, HJ Lee, B Nagler, P Neumayer, MM Notley, A Ortner, A Otten, A Ravasio, D Riley, F Roth, G Schaumann, D Schumacher, W Schumaker, K Siegenthaler, C Spindloe, F Wagner, K Wuensch, SH Glenzer, M Roth, RW Falcone


Ultrabright X-ray laser scattering for dynamic warm dense matter physics

NATURE PHOTONICS 9 (2015) 274-279

LB Fletcher, HJ Lee, T Doeppner, E Galtier, B Nagler, P Heimann, C Fortmann, S LePape, T Ma, M Millot, A Pak, D Turnbull, DA Chapman, DO Gericke, J Vorberger, T White, G Gregori, M Wei, B Barbrel, RW Falcone, C-C Kao, H Nuhn, J Welch, U Zastrau, P Neumayer, JB Hastings, SH Glenzer


Ultrafast electron kinetics in short pulse laser-driven dense hydrogen

JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 48 (2015) ARTN 224004

U Zastrau, P Sperling, C Fortmann-Grote, A Becker, T Bornath, R Bredow, T Doeppner, T Fennel, LB Fletcher, E Foerster, S Goede, G Gregori, M Harmand, V Hilbert, T Laarmann, HJ Lee, T Ma, KH Meiwes-Broer, JP Mithen, CD Murphy, M Nakatsutsumi, P Neumayer, A Przystawik, S Skruszewicz, J Tiggesbaeumker, S Toleikis, TG White, SH Glenzer, R Redmer, T Tschentscher


Observation of finite-wavelength screening in high-energy-density matter.

Nature communications 6 (2015) 6839-

DA Chapman, J Vorberger, LB Fletcher, RA Baggott, L Divol, T Döppner, RW Falcone, SH Glenzer, G Gregori, TM Guymer, AL Kritcher, OL Landen, T Ma, AE Pak, DO Gericke

A key component for the description of charged particle systems is the screening of the Coulomb interaction between charge carriers. First investigated in the 1920s by Debye and Hückel for electrolytes, charge screening is important for determining the structural and transport properties of matter as diverse as astrophysical and laboratory plasmas, nuclear matter such as quark-gluon plasmas, electrons in solids, planetary cores and charged macromolecules. For systems with negligible dynamics, screening is still mostly described using a Debye-Hückel-type approach. Here, we report the novel observation of a significant departure from the Debye-Hückel-type model in high-energy-density matter by probing laser-driven, shock-compressed plastic with high-energy X-rays. We use spectrally resolved X-ray scattering in a geometry that enables direct investigation of the screening cloud, and demonstrate that the observed elastic scattering amplitude is only well described within a more general approach.


Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas.

Proceedings of the National Academy of Sciences of the United States of America 112 (2015) 8211-8215

J Meinecke, P Tzeferacos, A Bell, R Bingham, R Clarke, E Churazov, R Crowston, H Doyle, RP Drake, R Heathcote, M Koenig, Y Kuramitsu, C Kuranz, D Lee, M MacDonald, C Murphy, M Notley, HS Park, A Pelka, A Ravasio, B Reville, Y Sakawa, W Wan, N Woolsey, R Yurchak, F Miniati, A Schekochihin, D Lamb, G Gregori

The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.


Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows

NATURE PHYSICS 11 (2015) 173-176

CM Huntington, F Fiuza, JS Ross, AB Zylstra, RP Drake, DH Froula, G Gregori, NL Kugland, CC Kuranz, MC Levy, CK Li, J Meinecke, T Morita, R Petrasso, C Plechaty, BA Remington, DD Ryutov, Y Sakawa, A Spitkovsky, H Takabe, H-S Park


Observations of continuum depression in warm dense matter with x-ray Thomson scattering.

Physical review letters 112 (2014) 145004-

LB Fletcher, AL Kritcher, A Pak, T Ma, T Döppner, C Fortmann, L Divol, OS Jones, OL Landen, HA Scott, J Vorberger, DA Chapman, DO Gericke, BA Mattern, GT Seidler, G Gregori, RW Falcone, SH Glenzer

Detailed measurements of the electron densities, temperatures, and ionization states of compressed CH shells approaching pressures of 50 Mbar are achieved with spectrally resolved x-ray scattering. Laser-produced 9 keV x-rays probe the plasma during the transient state of three-shock coalescence. High signal-to-noise x-ray scattering spectra show direct evidence of continuum depression in highly degenerate warm dense matter states with electron densities ne>1024  cm-3. The measured densities and temperatures agree well with radiation-hydrodynamic modeling when accounting for continuum lowering in calculations that employ detailed configuration accounting.


Resolving ultrafast heating of dense cryogenic hydrogen.

Physical review letters 112 (2014) 105002-

U Zastrau, P Sperling, M Harmand, A Becker, T Bornath, R Bredow, S Dziarzhytski, T Fennel, LB Fletcher, E Förster, S Göde, G Gregori, V Hilbert, D Hochhaus, B Holst, T Laarmann, HJ Lee, T Ma, JP Mithen, R Mitzner, CD Murphy, M Nakatsutsumi, P Neumayer, A Przystawik, S Roling, M Schulz, B Siemer, S Skruszewicz, J Tiggesbäumker, S Toleikis, T Tschentscher, T White, M Wöstmann, H Zacharias, T Döppner, SH Glenzer, R Redmer

We report on the dynamics of ultrafast heating in cryogenic hydrogen initiated by a ≲300  fs, 92 eV free electron laser x-ray burst. The rise of the x-ray scattering amplitude from a second x-ray pulse probes the transition from dense cryogenic molecular hydrogen to a nearly uncorrelated plasmalike structure, indicating an electron-ion equilibration time of ∼0.9  ps. The rise time agrees with radiation hydrodynamics simulations based on a conductivity model for partially ionized plasma that is validated by two-temperature density-functional theory.


Electron-ion equilibration in ultrafast heated graphite.

Physical review letters 112 (2014) 145005-

TG White, NJ Hartley, B Borm, BJ Crowley, JW Harris, DC Hochhaus, T Kaempfer, K Li, P Neumayer, LK Pattison, F Pfeifer, S Richardson, AP Robinson, I Uschmann, G Gregori

We have employed fast electrons produced by intense laser illumination to isochorically heat thermal electrons in solid density carbon to temperatures of ∼10,000  K. Using time-resolved x-ray diffraction, the temperature evolution of the lattice ions is obtained through the Debye-Waller effect, and this directly relates to the electron-ion equilibration rate. This is shown to be considerably lower than predicted from ideal plasma models. We attribute this to strong ion coupling screening the electron-ion interaction.