Publications by Joseph Conlon


Constraints on axion-like particles from non-observation of spectral modulations for X-ray point sources

JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2017) ARTN 005

JP Conlon, F Day, N Jennings, S Krippendorf, M Rummel


Galaxy cluster thermal x-ray spectra constrain axionlike particles

PHYSICAL REVIEW D 93 (2016) ARTN 123526

JP Conlon, AJ Powell, MCD Marsh


Axion decay constants away from the lamppost

JOURNAL OF HIGH ENERGY PHYSICS (2016) ARTN 085

JP Conlon, S Krippendorf


A 3.55 keV line from DM -> a -> gamma predictions for cool-core and non-cool-core clusters

JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2015) ARTN 019

JP Conlon, AJ Powell


ALP conversion and the soft X-ray excess in the outskirts of the Coma cluster

JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2015) ARTN 011

D Kraljic, M Rummel, JP Conlon


Observational consistency and future predictions for a 3.5 keV ALP to photon line

JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2015) ARTN 013

PD Alvarez, JP Conlon, FV Day, MCD Marsh, M Rummel


3.55 keV photon lines from axion to photon conversion in the Milky Way and M31

JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2014) ARTN 033

JP Conlon, FV Day


Soft X-ray excess in the Coma cluster from a Cosmic Axion Background

JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2014) ARTN 026

S Angus, JP Conlon, MCD Marsh, AJ Powell, LT Witkowski


A note on the magnitude of the flux superpotential

JOURNAL OF HIGH ENERGY PHYSICS (2014) ARTN 027

M Cicoli, JP Conlon, A Maharana, F Quevedo


3.55 keV photon line and its morphology from a 3.55 keV axionlike particle line

PHYSICAL REVIEW D 90 (2014) ARTN 023540

M Cicoli, JP Conlon, MCD Marsh, M Rummel


Excess Astrophysical Photons from a 0.1–1 keV Cosmic Axion Background

Physics Review Letters 111 (2013) 15130

J Conlon, MCD Marsh


Dark radiation in LARGE volume models

PHYSICAL REVIEW D 87 (2013) ARTN 043520

M Cicoli, JP Conlon, F Quevedo


Soft supersymmetry breaking in anisotropic LARGE volume compactifications

JOURNAL OF HIGH ENERGY PHYSICS (2013) ARTN 071

S Angus, JP Conlon


Superpotential de-sequestering in string models

Journal of High Energy Physics 2013 (2013)

M Berg, JP Conlon, D Marsh, LT Witkowski

Non-perturbative superpotential cross-couplings between visible sector matter and Kähler moduli can lead to significant flavour-changing neutral currents in compactifications of type IIB string theory. Here, we compute corrections to Yukawa couplings in orbifold models with chiral matter localised on D3-branes and non-perturbative effects on distant D7-branes. By evaluating a threshold correction to the D7-brane gauge coupling, we determine conditions under which the non-perturbative corrections to the Yukawa couplings appear. The flavour structure of the induced Yukawa coupling generically fails to be aligned with the tree-level flavour structure. We check our results by also evaluating a correlation function of two D7-brane gauginos and a D3-brane Yukawa coupling. Finally, by calculating a string amplitude between n hidden scalars and visible matter we show how non-vanishing vacuum expectation values of distant D7-brane scalars, if present, may correct visible Yukawa couplings with a flavour structure that differs from the tree-level flavour structure. © 2013 SISSA, Trieste, Italy.


Cosmological natural selection and the purpose of the universe

Complexity 18 (2013) 48-56

A Gardner, JP Conlon

The cosmological natural selection (CNS) hypothesis holds that the fundamental constants of nature have been fine-tuned by an evolutionary process in which universes produce daughter universes via the formation of black holes. Here, we formulate the CNS hypothesis using standard mathematical tools of evolutionary biology. Specifically, we capture the dynamics of CNS using Price's equation, and we capture the adaptive purpose of the universe using an optimization program. We establish mathematical correspondences between the dynamics and optimization formalisms, confirming that CNS acts according to a formal design objective, with successive generations of universes appearing designed to produce black holes. © 2013 Wiley Periodicals, Inc.


Moduli redefinitions and moduli stabilisation

Journal of High Energy Physics 2010 (2010)

JP Conlon, FG Pedro

Field redefinitions occur in string compactifications at the one loop level. We review arguments for why such redefinitions occur and study their effect on moduli stabilisation and supersymmetry breaking in the LARGE volume scenario. For small moduli, although the effect of such redefinitions can be larger than that of the α' corrections in both the Kähler and scalar potentials, they do not alter the structure of the scalar potential. For the less well motivated case of large moduli, the redefinitions can dominate all other terms in the scalar potential. We also study the effect of redefinitions on the structure of supersymmetry breaking and soft terms. © SISSA 2010.


Gauge threshold corrections for local type-IIB/F-theory GUTs

PHYSICAL REVIEW D 80 (2009) ARTN 106004

JP Conlon, E Palti


Measuring Smuon-Selectron Mass Splitting at the LHC and Patterns of Supersymmetry Breaking

ArXiv (0)

BC Allanach, JP Conlon, CG Lester

With sufficient data, Large Hadron Collider (LHC) experiments can constrain the selectron-smuon mass splitting through differences in the di-electron and di-muon edges from supersymmetry (SUSY) cascade decays. We study the sensitivity of the LHC to this mass splitting, which within mSUGRA may be constrained down to O(10^{-4}) for 30 fb^{-1} of integrated luminosity. Over substantial regions of SUSY breaking parameter space the fractional edge splitting can be significantly enhanced over the fractional mass splitting. Within models where the selectron and smuon are constrained to be universal at a high scale, edge splittings up to a few percent may be induced by renormalisation group effects and may be significantly discriminated from zero. The edge splitting provides important information about high-scale SUSY breaking terms and should be included in any fit of LHC data to high-scale models.


Continuous Global Symmetries and Hyperweak Interactions in String Compactifications

ArXiv (0)

CP Burgess, JP Conlon, L-Y Hung, CH Kom, A Maharana, F Quevedo

We revisit general arguments for the absence of exact continuous global symmetries in string compactifications and extend them to D-brane models. We elucidate the various ways approximate continuous global symmetries arise in the 4-dimensional effective action. In addition to two familiar methods - axionic Peccei-Quinn symmetries and remnant global abelian symmetries from Green-Schwarz gauge symmetry breaking - we identify new ways to generate approximate continuous global symmetries. Two methods stand out, both of which occur for local brane constructions within the LARGE volume scenario of moduli stabilisation. The first is the generic existence of continuous non-abelian global symmetries associated with local Calabi-Yau isometries. These symmetries are exact in the non-compact limit and are spontaneously broken by the LARGE volume, with breaking effects having phenomenologically interesting sizes \sim 0.01 for plausible choices for underlying parameters. Such approximate flavour symmetries are phenomenologically attractive and may allow the fermion mass hierarchies to be connected to the electroweak hierarchy via the large volume. The second is the possible existence of new hyper-weak gauge interactions under which Standard Model matter is charged, with \alpha_{HW} \sim 10^{-9}. Such groups arise from branes wrapping bulk cycles and intersecting the local (resolved) singularity on which the Standard Model is supported. We discuss experimental bounds for these new gauge bosons and their interactions with the Standard Model particles.


Kahler Potentials of Chiral Matter Fields for Calabi-Yau String Compactifications

ArXiv (0)

JP Conlon, D Cremades, F Quevedo

The Kahler potential is the least understood part of effective N=1 supersymmetric theories derived from string compactifications. Even at tree-level, the Kahler potential for the physical matter fields, as a function of the moduli fields, is unknown for generic Calabi-Yau compactifications and has only been computed for simple toroidal orientifolds. In this paper we describe how the modular dependence of matter metrics may be extracted in a perturbative expansion in the Kahler moduli. Scaling arguments, locality and knowledge of the structure of the physical Yukawa couplings are sufficient to find the relevant Kahler potential. Using these techniques we compute the `modular weights' for bifundamental matter on wrapped D7 branes for large-volume IIB Calabi-Yau flux compactifications. We also apply our techniques to the case of toroidal compactifications, obtaining results consistent with those present in the literature. Our techniques do not provide the complex structure moduli dependence of the Kahler potential, but are sufficient to extract relevant information about the canonically normalised matter fields and the soft supersymmetry breaking terms in gravity mediated scenarios.

Pages