Publications by Joseph Conlon

Galaxy cluster thermal x-ray spectra constrain axionlike particles

Physical Review D - Particles, Fields, Gravitation and Cosmology 93 (2016)

JP Conlon, AJ Powell, MCD Marsh

© 2016 American Physical Society.Axionlike particles (ALPs) and photons interconvert in the presence of a magnetic field. At keV energies in the environment of galaxy clusters, the conversion probability can become unsuppressed for light ALPs. Conversion of thermal x-ray photons into ALPs can introduce a steplike feature into the cluster thermal bremsstrahlung spectrum, and we argue that existing x-ray data on galaxy clusters should be sufficient to extend bounds on ALPs in the low-mass region ma1×10-12 eV down to M∼7×1011 GeV, and that for 1011 GeV<M1012 GeV light ALPs give rise to interesting and unique observational signatures that may be probed by existing and upcoming x-ray (and potentially x-ray polarization) observations of galaxy clusters.

Axion decay constants away from the lamppost

Journal of High Energy Physics 2016 (2016)

JP Conlon, S Krippendorf

© 2016, The Author(s).Abstract: It is unknown whether a bound on axion field ranges exists within quantum gravity. We study axion field ranges using extended supersymmetry, in particular allowing an analysis within strongly coupled regions of moduli space. We apply this strategy to Calabi-Yau compactifications with one and two Kähler moduli. We relate the maximally allowable decay constant to geometric properties of the underlying Calabi-Yau geometry. In all examples we find a maximal field range close to the reduced Planck mass (with the largest field range being 3.25 MP). On this perspective, field ranges relate to the intersection and instanton numbers of the underlying Calabi-Yau geometry.

ALP conversion and the soft X-ray excess in the outskirts of the Coma cluster


D Kraljic, M Rummel, JP Conlon

Observational consistency and future predictions for a 3.5 keV ALP to photon line


PD Alvarez, JP Conlon, FV Day, MCD Marsh, M Rummel

A 3.55 keV line from DM -> a -> gamma predictions for cool-core and non-cool-core clusters


JP Conlon, AJ Powell

3.55 keV photon line and its morphology from a 3.55 keV axionlike particle line

PHYSICAL REVIEW D 90 (2014) ARTN 023540

M Cicoli, JP Conlon, MCD Marsh, M Rummel

A note on the magnitude of the flux superpotential


M Cicoli, JP Conlon, A Maharana, F Quevedo

3.55 keV photon lines from axion to photon conversion in the Milky Way and M31


JP Conlon, FV Day

Soft X-ray excess in the Coma cluster from a Cosmic Axion Background


S Angus, JP Conlon, MCD Marsh, AJ Powell, LT Witkowski

Excess Astrophysical Photons from a 0.1–1 keV Cosmic Axion Background

Physics Review Letters 111 (2013) 15130

J Conlon, MCD Marsh

Dark radiation in LARGE volume models

PHYSICAL REVIEW D 87 (2013) ARTN 043520

M Cicoli, JP Conlon, F Quevedo

Soft supersymmetry breaking in anisotropic LARGE volume compactifications


S Angus, JP Conlon

Cosmological natural selection and the purpose of the universe

Complexity 18 (2013) 48-56

A Gardner, JP Conlon

The cosmological natural selection (CNS) hypothesis holds that the fundamental constants of nature have been fine-tuned by an evolutionary process in which universes produce daughter universes via the formation of black holes. Here, we formulate the CNS hypothesis using standard mathematical tools of evolutionary biology. Specifically, we capture the dynamics of CNS using Price's equation, and we capture the adaptive purpose of the universe using an optimization program. We establish mathematical correspondences between the dynamics and optimization formalisms, confirming that CNS acts according to a formal design objective, with successive generations of universes appearing designed to produce black holes. © 2013 Wiley Periodicals, Inc.

Superpotential de-sequestering in string models

Journal of High Energy Physics 2013 (2013)

M Berg, JP Conlon, D Marsh, LT Witkowski

Non-perturbative superpotential cross-couplings between visible sector matter and Kähler moduli can lead to significant flavour-changing neutral currents in compactifications of type IIB string theory. Here, we compute corrections to Yukawa couplings in orbifold models with chiral matter localised on D3-branes and non-perturbative effects on distant D7-branes. By evaluating a threshold correction to the D7-brane gauge coupling, we determine conditions under which the non-perturbative corrections to the Yukawa couplings appear. The flavour structure of the induced Yukawa coupling generically fails to be aligned with the tree-level flavour structure. We check our results by also evaluating a correlation function of two D7-brane gauginos and a D3-brane Yukawa coupling. Finally, by calculating a string amplitude between n hidden scalars and visible matter we show how non-vanishing vacuum expectation values of distant D7-brane scalars, if present, may correct visible Yukawa couplings with a flavour structure that differs from the tree-level flavour structure. © 2013 SISSA, Trieste, Italy.

Brane-Antibrane Backreaction in Axion Monodromy Inflation

ArXiv (0)

JP Conlon

We calculate the interaction potential between D5 and anti-D5 branes wrapping distant but homologous 2-cycles. The interaction potential is logarithmic in the separation radius and does not decouple at infinity. We show that logarithmic backreaction is generic for 5-branes wrapping distant but homologous 2-cycles, and we argue that this destabilises models of axion monodromy inflation involving NS5 brane-antibrane pairs in separate warped throats towards an uncontrolled region.

Moduli redefinitions and moduli stabilisation

Journal of High Energy Physics 2010 (2010)

JP Conlon, FG Pedro

Field redefinitions occur in string compactifications at the one loop level. We review arguments for why such redefinitions occur and study their effect on moduli stabilisation and supersymmetry breaking in the LARGE volume scenario. For small moduli, although the effect of such redefinitions can be larger than that of the α' corrections in both the Kähler and scalar potentials, they do not alter the structure of the scalar potential. For the less well motivated case of large moduli, the redefinitions can dominate all other terms in the scalar potential. We also study the effect of redefinitions on the structure of supersymmetry breaking and soft terms. © SISSA 2010.

Gauge threshold corrections for local type-IIB/F-theory GUTs

PHYSICAL REVIEW D 80 (2009) ARTN 106004

JP Conlon, E Palti

Mirror Mediation

ArXiv (0)

JP Conlon

I show that the effective action of string compactifications has a structure that can naturally solve the supersymmetric flavour and CP problems. At leading order in the g_s and \alpha' expansions, the hidden sector factorises. The moduli space splits into two mirror parts that depend on Kahler and complex structure moduli. Holomorphy implies the flavour structure of the Yukawa couplings arises in only one part. In type IIA string theory flavour arises through the Kahler moduli sector and in type IIB flavour arises through the complex structure moduli sector. This factorisation gives a simple solution to the supersymmetric flavour and CP problems: flavour physics is generated in one sector while supersymmetry is broken in the mirror sector. This mechanism does not require the presence of gauge, gaugino or anomaly mediation and is explicitly realised by phenomenological models of IIB flux compactifications.

Measuring Smuon-Selectron Mass Splitting at the LHC and Patterns of Supersymmetry Breaking

ArXiv (0)

BC Allanach, JP Conlon, CG Lester

With sufficient data, Large Hadron Collider (LHC) experiments can constrain the selectron-smuon mass splitting through differences in the di-electron and di-muon edges from supersymmetry (SUSY) cascade decays. We study the sensitivity of the LHC to this mass splitting, which within mSUGRA may be constrained down to O(10^{-4}) for 30 fb^{-1} of integrated luminosity. Over substantial regions of SUSY breaking parameter space the fractional edge splitting can be significantly enhanced over the fractional mass splitting. Within models where the selectron and smuon are constrained to be universal at a high scale, edge splittings up to a few percent may be induced by renormalisation group effects and may be significantly discriminated from zero. The edge splitting provides important information about high-scale SUSY breaking terms and should be included in any fit of LHC data to high-scale models.

Field Identifications for Interacting Bosonic Models in N=2 Superconformal Field Theory

ArXiv (0)

J Conlon, D Gepner

We study a family of interacting bosonic representations of the N=2 superconformal algebra. These models can be tensored with a conjugate theory to give the free theory. We explain how to use free fields to study interacting fields and their dimensions, and how we may identify different free fields as representing the same interacting field. We show how a lattice of identifying fields may be built up and how every free field may be reduced to a standard form, thus permitting the resolution of the spectrum. We explain how to build the extended algebra and show that there are a finite number of primary fields for this algebra for any of the models. We illustrate this by studying an example.